New Trends in Fluid Mechanics Research


Book Description

This volume is the proceedings of the Fifth International Conference on Fluid Mechanics (ICFM-V), the primary forum for the presentation of technological advances and research results in the fields of theoretical, experimental, and computational Fluid Mechanics. Topics include: flow instability and turbulence, aerodynamics and gas dynamics, industrial and environmental fluid mechanics, biofluid mechanics, geophysical fluid mechanics, plasma and magneto-hydrodynamics, and others.




Manipulation and Control of Jets in Crossflow


Book Description

Fundamental Non-Reactive Jets in Crossflow and Other Jet Systems; Background on Modeling, Dynamical Systems, and Control; Reactive Jets in Crossflow and Multiphase Jets; Controlled Jets in Crossflow and Control via Jet Systems;







Annual Research Briefs ...


Book Description




Fluid Mechanics and Fluid Power – Contemporary Research


Book Description

This volume comprises the proceedings of the 42nd National and 5th International Conference on Fluid Mechanics and Fluid Power held at IIT Kanpur in December, 2014.The conference proceedings encapsulate the best deliberations held during the conference. The diversity of participation in the conference, from academia, industry and research laboratories reflects in the articles appearing in the volume. This contributed volume has articles from authors who have participated in the conference on thematic areas such as Fundamental Issues and Perspectives in Fluid Mechanics; Measurement Techniques and Instrumentation; Computational Fluid Dynamics; Instability, Transition and Turbulence; Turbomachinery; Multiphase Flows; Fluid‐Structure Interaction and Flow‐Induced Noise; Microfluidics; Bio‐inspired Fluid Mechanics; Internal Combustion Engines and Gas Turbines; and Specialized Topics. The contents of this volume will prove useful to researchers from industry and academia alike.




Advances in Heat Transfer


Book Description

Advances in Heat Transfer, Volume 49 provides in-depth review articles from a broader scope than in traditional journals or texts. Topics covered in this new volume include Heat Transfer in Rotating Cooling Channel, Flow Boiling and Flow Condensation in Reduced Gravity, Advances in Gas Turbine Cooling, and Advanced Heat Transfer Topics in Complex Duct Flows. While the articles in this series will be of great interest to mechanical, chemical and industrial engineers working in the field of heat transfer, the book is also ideal for those in graduate schools or industry, and even non-specialists interested in the latest research. Compiles the expert opinions of leaders in the industry Fills the information gap between regularly scheduled journals and university-level textbooks by providing in-depth review articles over a broader scope than in traditional journals or texts Essential reading for all mechanical, chemical and industrial engineers working in the field of heat transfer, or in graduate schools or industry




Advances in Critical Flow Dynamics Involving Moving/Deformable Structures with Design Applications


Book Description

This book reports on the latest knowledge concerning critical phenomena arising in fluid-structure interaction due to movement and/or deformation of bodies. The focus of the book is on reporting progress in understanding turbulence and flow control to improve aerodynamic / hydrodynamic performance by reducing drag, increasing lift or thrust and reducing noise under critical conditions that may result in massive separation, strong vortex dynamics, amplification of harmful instabilities (flutter, buffet), and flow -induced vibrations. Theory together with large-scale simulations and experiments have revealed new features of turbulent flow in the boundary layer over bodies and in thin shear layers immediately downstream of separation. New insights into turbulent flow interacting with actively deformable structures, leading to new ways of adapting and controlling the body shape and vibrations to respond to these critical conditions, are investigated. The book covers new features of turbulent flows in boundary layers over wings and in shear layers immediately downstream: studies of natural and artificially generated fluctuations; reduction of noise and drag; and electromechanical conversion topics. Smart actuators as well as how smart designs lead to considerable benefits compared with conventional methods are also extensively discussed. Based on contributions presented at the IUTAM Symposium “Critical Flow Dynamics involving Moving/Deformable Structures with Design applications”, held in June 18-22, 2018, in Santorini, Greece, the book provides readers with extensive information about current theories, methods and challenges in flow and turbulence control, and practical knowledge about how to use this information together with smart and bio-inspired design tools to improve aerodynamic and hydrodynamic design and safety.




Numerical Simulation and Spectral Modal Analysis of Nonlinear Dynamics and Acoustics in Turbulent Jets


Book Description

Turbulent jets are canonical flows that occur when fluid emerges from an orifice into the surrounding environment, such as the jet from aircraft engines. As the fluid emerges from the nozzle, it forms an unstable shear layer that grows very rapidly, forming large-scale coherent structures, which are the main sources of aft-angle jet noise. The mechanism behind the generation of jet noise is still not fully understood. Further insights into characteristics of coherent structures can aid our understanding of turbulence, and in modeling and controlling various mechanisms. The development of techniques for the education of coherent structures is another objective of this work.The main foci of this work are: (i) performing high-fidelity numerical simulations of turbulent jets and extracting physical insights from coherent flow structures, and (ii) developing techniques that extract these flow structures from the large dataset generated by these simulations. In recent years, spectral proper orthogonal decomposition (SPOD) has emerged as a major tool for extracting coherent structures. In the first part, we extend SPOD for low-rank reconstruction, denoising, prewhitenening, frequency-time analysis, and gappy-data reconstruction. Two approaches for flow-field reconstruction are proposed, a frequency-domain approach, and a time-domain approach. A SPOD-based denoising strategy is also presented, which achieves significant noise reduction while facilitating drastic data compression. A convolution-based strategy is proposed for frequency-time analysis that characterizes the intermittency of spatially coherent flow structures. When applied to the turbulent jet data, SPOD-based frequency-time analysis reveals that the intermittent occurrence of large-scale coherent structures is directly associated with high-energy events. Lastly, a new algorithm, gappy-SPOD, is developed that leverages the space-time correlation of SPOD modes to estimate missing data. Even for highly chaotic flows with up to 20% missing data, our method facilitates that structures associated with different time scales are well-estimated in the missing regions. For the cases considered here, it outperforms established techniques such as gappy-POD and Kriging. In the second part, we investigate the nonlinear dynamics and controllability of coherent structures by actuating them. Large-eddy simulations (LES) of two unforced and four forced jets at Re = 50,000 and M_j = 0.4 were performed. The two unforced jets include an initially laminar and a turbulent jet. All four forced jets are turbulent and are forced at the azimuthal wavenumbers m=0, m=±1, m=±2, and m=±6. The unforced and forced jets were validated with companion experiments. Compared to the turbulent jet, the initially laminar jet develops later but at a faster rate, which is a result of the vortex pairing in the shear layer. The emphasis of the analysis is on characterizing the vortex pairing and the associated nonlinear energy transfer. Here, for the first time, we evaluate the spectral energy budget based on the leading modes of the SPOD. Our analysis reveals that energy flows from the fundamental to its subharmonic, resulting in the growth of the subharmonic. These results provide evidence for a previously suggested parametric resonance mechanism. In the forced jets, we examine the effect of forcing using a recently proposed method, bispectral mode decomposition (BMD), which extracts flow structures associated with nonlinear triadic interactions. We use BMD to construct a cascade of triads and find that the most dominant triads arise due to fundamental self-interaction and second-harmonic-fundamental difference interaction. Furthermore, our analysis of the far-field in the unforced and m=0-forced jets sheds light on the crucial role of difference-interactions in the generation of jet noise.