Dynamics of Physical Systems


Book Description




Theory of Linear Physical Systems


Book Description

An eminent electrical engineer presents this advanced treatise, which approaches the subject from the viewpoint of classical dynamics and covers Fourier methods. Suitable for upper-level undergraduates and graduate students. 1963 edition.







Dynamics of Physical Systems


Book Description




Dynamics of Physical Systems


Book Description

A comprehensive text and reference for a first study of system dynamics and control, this volume emphasizes engineering concepts — modeling, dynamics feedback, and stability, for example — rather than mechanistic analysis procedures designed to yield routine answers to programmable problems. Its focus on physical modeling cultivates an appreciation for the breadth of dynamic systems without resorting to analogous electric-circuit formulation and analysis. After a careful treatment of the modeling of physical systems in several media and the derivation of the differential equations of motion, the text determines the physical behavior those equations connote: the free and forced motions of elementary systems and compound "systems of systems." Dynamic stability and natural behavior receive comprehensive linear treatment, and concluding chapters examine response to continuing and abrupt forcing inputs and present a fundamental treatment of analysis and synthesis of feedback control systems. This text's breadth is further realized through a series of examples and problems that develop physical insight in the best traditions of modern engineering and lead students into richer technical ground. As presented in this book, the concept of dynamics forms the basis for understanding not only physical devices, but also systems in such fields as management and transportation. Indeed, the fundamentals developed here constitute the common language of engineering, making this text applicable to a wide variety of undergraduate and graduate courses. 334 figures. 12 tables.




Modeling and Control of Complex Physical Systems


Book Description

Energy exchange is a major foundation of the dynamics of physical systems, and, hence, in the study of complex multi-domain systems, methodologies that explicitly describe the topology of energy exchanges are instrumental in structuring the modeling and the computation of the system's dynamics and its control. This book is the outcome of the European Project "Geoplex" (FP5 IST-2001-34166) that studied and extended such system modeling and control methodologies. This unique book starts from the basic concept of port-based modeling, and extends it to port-Hamiltonian systems. This generic paradigm is applied to various physical domains, showing its power and unifying flexibility for real multi-domain systems.




Dynamics Of Complex Systems


Book Description

This book aims to develop models and modeling techniques that are useful when applied to all complex systems. It adopts both analytic tools and computer simulation. The book is intended for students and researchers with a variety of backgrounds.




Cellular Automata Modeling of Physical Systems


Book Description

Self-contained, pedagogic introduction to powerful techniques for graduate students and researchers in physics and computer science.




Differential Dynamical Systems, Revised Edition


Book Description

Differential equations are the basis for models of any physical systems that exhibit smooth change. This book combines much of the material found in a traditional course on ordinary differential equations with an introduction to the more modern theory of dynamical systems. Applications of this theory to physics, biology, chemistry, and engineering are shown through examples in such areas as population modeling, fluid dynamics, electronics, and mechanics. Differential Dynamical Systems begins with coverage of linear systems, including matrix algebra; the focus then shifts to foundational material on nonlinear differential equations, making heavy use of the contraction-mapping theorem. Subsequent chapters deal specifically with dynamical systems concepts?flow, stability, invariant manifolds, the phase plane, bifurcation, chaos, and Hamiltonian dynamics. This new edition contains several important updates and revisions throughout the book. Throughout the book, the author includes exercises to help students develop an analytical and geometrical understanding of dynamics. Many of the exercises and examples are based on applications and some involve computation; an appendix offers simple codes written in Maple, Mathematica, and MATLAB software to give students practice with computation applied to dynamical systems problems.