Dynamics of Topologically Generic Homeomorphisms


Book Description

The goal of this work is to describe the dynamics of generic homeomorphisms of certain compact metric spaces $X$. Here ``generic'' is used in the topological sense -- a property of homeomorphisms on $X$ is generic if the set of homeomorphisms with the property contains a residual subset (in the sense of Baire category) of the space of all homeomorphisms on $X$. The spaces $X$ we consider are those with enough local homogeneity to allow certain localized perturbations of homeomorphisms; for example, any compact manifold is such a space. We show that the dynamics of a generic homeomorphism is quite complicated, with a number of distinct dynamical behaviors coexisting (some resemble subshifts of finite type, others, which we call `generalized adding machines', appear strictly periodic when viewed to any finite precision, but are not actually periodic). Such a homeomorphism has infinitely many, intricately nested attractors and repellors, and uncountably many distinct dynamically-connected components of the chain recurrent set. We single out several types of these ``chain components'', and show that each type occurs densely (in an appropriate sense) in the chain recurrent set. We also identify one type that occurs generically in the chain recurrent set. We also show that, at least for $X$ a manifold, the chain recurrent set of a generic homeomorphism is a Cantor set, so its complement is open and dense. Somewhat surprisingly, there is a residual subset of $X$ consisting of points whose limit sets are chain components of a type other than the type of chain components that are residual in the space of all chain components. In fact, for each generic homeomorphism on $X$ there is a residual subset of points of $X$ satisfying a stability condition stronger than Lyapunov stability.




Integral Transformations and Anticipative Calculus for Fractional Brownian Motions


Book Description

A paper that studies two types of integral transformation associated with fractional Brownian motion. They are applied to construct approximation schemes for fractional Brownian motion by polygonal approximation of standard Brownian motion. This approximation is the best in the sense that it minimizes the mean square error.




Uniformizing Dessins and BelyiMaps via Circle Packing


Book Description

Introduction Dessins d'enfants Discrete Dessins via circle packing Uniformizing Dessins A menagerie of Dessins d'enfants Computational issues Additional constructions Non-equilateral triangulations The discrete option Appendix: Implementation Bibliography.




A Generating Function Approach to the Enumeration of Matrices in Classical Groups over Finite Fields


Book Description

Generating function techniques are used to study the probability that an element of a classical group defined over a finite field is separable, cyclic, semisimple or regular. The limits of these probabilities as the dimension tends to infinity are calculated in all cases, and exponential convergence to the limit is proved. These results complement and extend earlier results of the authors, G. E. Wall, and Guralnick & Lubeck.




Exceptional Vector Bundles, Tilting Sheaves and Tilting Complexes for Weighted Projective Lines


Book Description

Deals with weighted projective lines, a class of non-commutative curves modelled by Geigle and Lenzing on a graded commutative sheaf theory. They play an important role in representation theory of finite-dimensional algebras; the complexity of the classification of coherent sheaves largely depends on the genus of these curves.




The Second Duals of Beurling Algebras


Book Description

Let $A$ be a Banach algebra, with second dual space $A""$. We propose to study the space $A""$ as a Banach algebra. There are two Banach algebra products on $A""$, denoted by $\,\Box\,$ and $\,\Diamond\,$. The Banach algebra $A$ is Arens regular if the two products $\Box$ and $\Diamond$ coincide on $A""$.







Mutually Catalytic Super Branching Random Walks: Large Finite Systems and Renormalization Analysis


Book Description

Studies the evolution of the large finite spatial systems in size-dependent time scales and compare them with the behavior of the infinite systems, which amounts to establishing the so-called finite system scheme. This title introduces the concept of a continuum limit in the hierarchical mean field limit.




Positive Definite Functions on Infinite-Dimensional Convex Cones


Book Description

A memoir that studies positive definite functions on convex subsets of finite- or infinite-dimensional vector spaces. It studies representations of convex cones by positive operators on Hilbert spaces. It also studies the interplay between positive definite functions and representations of convex cones.




Moduli Spaces of Polynomials in Two Variables


Book Description

Investigates the geometry of the orbit space. This book associates a graph with each polynomial in two variables that encodes part of its geometric properties at infinity. It also defines a partition of $\mathbb{C} x, y]$ imposing that the polynomials in the same stratum are the polynomials with a fixed associated graph