Vehicle Collision Dynamics


Book Description

Vehicle Collision Dynamics provides a unified framework and timely collection of up-to-date results on front crash, side crash and car to car crashes. The book is ideal as a reference, with an approach that's simple, clear, and easy to comprehend. As the mathematical and software-based modelling and analysis of vehicle crash scenarios have not been systematically investigated, this is an ideal source for further study. Numerous academic and industry studies have analyzed vehicle safety during physical crash scenarios, thus material responses during crashes serve as one of the most important performance indices for mechanical design problems. In addition to mathematical methodologies, this book provides thorough coverage of computer simulations, software-based modeling, and an analysis of methods capable of providing more flexibility. Unifies existing and emerging concepts concerning vehicle crash dynamics Provides a series of latest results in mathematical-based modeling from front and oblique perspectives Contains almost everything needed to capture the essence of model development and analysis for vehicle crash Includes both numerical and simulation results given in each chapter Presents a comprehensive, up-to-date reference that encourages further study







Vehicle Crash Mechanics


Book Description

Governed by strict regulations and the intricate balance of complex interactions among variables, the application of mechanics to vehicle crashworthiness is not a simple task. It demands a solid understanding of the fundamentals, careful analysis, and practical knowledge of the tools and techniques of that analysis. Vehicle Crash Mechanics s




Vehicle Accident Analysis and Reconstruction Methods


Book Description

Designed for the experienced practitioner, this new book aims to help reconstruction specialists with problems they may encounter in everyday analysis. The authors demonstrate how to take the physics behind accidents out of the idealized world and into practical situations. Real-world examples are used to illustrate the methods, clarify important concepts, and provide practical applications to those working in the field. Thoroughly revised, this new edition builds on the original exploration of accident analysis, reconstruction, and vehicle design. Enhanced with new material and improved chapters on key topics, an expanded glossary of automotive terms, and a bibliography at the end of the book providing further reading suggestions make this an essential resource reference for engineers involved in litigation, forensic investigation, automotive safety, and crash reconstruction. Police officers, attorneys, and insurance professionals will also find the book to be a definitive resource in reconstructing accident scenes. New Topics: • Event data recorders (EDRs) • Frictional drag coefficients for sliding tires • Railroad grade-crossing collisions • New practical applications of mathematical methods Enhanced Features: • Expanded glossary of automotive terms • Bibliography with further reading suggestions • Improved chapters on tire forces, rollover accidents, crush energy, pedestrian collisions, vehicle dynamic simulation




Motor Vehicle Dynamics: Modelling And Simulation


Book Description

The book starts with an historical overview of road vehicles. The first part deals with the forces exchanged between the vehicle and the road and the vehicle and the air with the aim of supplying the physical facts and the relevant mathematical models about the forces which dominate the dynamics of the vehicle.The second part deals with the dynamic behaviour of the vehicle in normal driving conditions with some extensions towards conditions encountered in high-speed racing driving.




Modeling of Road Traffic Events


Book Description

This books reviews and brings readers up to date with the latest research knowledge on road traffic safety. It describes and discusses mathematical descriptions of the process of a motor vehicle crash and indicates the various factors that impact on collision models. It tackles also vehicle stability and shows how the forces generated in crashes result in different extents of post-accident repair. Mathematical models that simulate vehicle stability data are compared with those of real vehicles. Practical uses of the models are explained to readers. The book will be of interest to researchers in transport and vehicle technology well as automotive industry professionals.




Path Planning and Tracking for Vehicle Collision Avoidance in Lateral and Longitudinal Motion Directions


Book Description

In recent years, the control of Connected and Automated Vehicles (CAVs) has attracted strong attention for various automotive applications. One of the important features demanded of CAVs is collision avoidance, whether it is a stationary or a moving obstacle. Due to complex traffic conditions and various vehicle dynamics, the collision avoidance system should ensure that the vehicle can avoid collision with other vehicles or obstacles in longitudinal and lateral directions simultaneously. The longitudinal collision avoidance controller can avoid or mitigate vehicle collision accidents effectively via Forward Collision Warning (FCW), Brake Assist System (BAS), and Autonomous Emergency Braking (AEB), which has been commercially applied in many new vehicles launched by automobile enterprises. But in lateral motion direction, it is necessary to determine a flexible collision avoidance path in real time in case of detecting any obstacle. Then, a path-tracking algorithm is designed to assure that the vehicle will follow the predetermined path precisely, while guaranteeing certain comfort and vehicle stability over a wide range of velocities. In recent years, the rapid development of sensor, control, and communication technology has brought both possibilities and challenges to the improvement of vehicle collision avoidance capability, so collision avoidance system still needs to be further studied based on the emerging technologies. In this book, we provide a comprehensive overview of the current collision avoidance strategies for traditional vehicles and CAVs. First, the book introduces some emergency path planning methods that can be applied in global route design and local path generation situations which are the most common scenarios in driving. A comparison is made in the path-planning problem in both timing and performance between the conventional algorithms and emergency methods. In addition, this book introduces and designs an up-to-date path-planning method based on artificial potential field methods for collision avoidance, and verifies the effectiveness of this method in complex road environment. Next, in order to accurately track the predetermined path for collision avoidance, traditional control methods, humanlike control strategies, and intelligent approaches are discussed to solve the path-tracking problem and ensure the vehicle successfully avoids the collisions. In addition, this book designs and applies robust control to solve the path-tracking problem and verify its tracking effect in different scenarios. Finally, this book introduces the basic principles and test methods of AEB system for collision avoidance of a single vehicle. Meanwhile, by taking advantage of data sharing between vehicles based on V2X (vehicle-to-vehicle or vehicle-to-infrastructure) communication, pile-up accidents in longitudinal direction are effectively avoided through cooperative motion control of multiple vehicles.




Vehicle Dynamics Using Computer Simulations and Event Data Recorders


Book Description

The police crash investigation department requires an engineering study of a vehicle crash before presenting a case to the judicial system. Vehicle crash reconstruction simulations establish new scientific basis for the judiciary system. Computer models are used to reconstruct the vehicle performance, since the dynamic performance of a vehicle collision cannot be repeated in real time. Vehicle dynamics is the engineering study of a vehicle based on mechanics and physics. This thesis uses modern techniques in combination with the information of Event Data Recorders (EDR) to help the judiciary system identify the safety parameters and condition of vehicles. The research analysis mainly focuses on the performance of police vehicles. The EDR is a device installed in the vehicle to record how the driver responds to a crash event. Since 2004 the event data recorders are mandatory in every vehicle. Also, the EDR is able to analyze the change in velocity of the vehicle at the time of the impact. The analysis of the change in velocity allows a base structure for computer simulation. A 3-D computer solid model of a 2004 Ford Crown Victoria is developed using Solidwoks. Also, dynamic computer simulations are developed using Adams View. The solid models consist of a tire assembly, a suspension assembly and a vehicle structure. These are assembled to form a complete model of the vehicle. The main objective is to analyze the vehicle's performance during tactile driving maneuverers. The second objective is to provide new alternative methods to demonstrate a crash reconstruction to the judicial system. This method will provide a simpler, faster, and more accurate analysis of a vehicle dynamics. Additionally, the outcome of these simulations will provide a theoretical basis for future vehicle design.




Advances in System Dynamics and Control


Book Description

Complex systems are pervasive in many areas of science. With the increasing requirement for high levels of system performance, complex systems has become an important area of research due to its role in many industries. Advances in System Dynamics and Control provides emerging research on the applications in the field of control and analysis for complex systems, with a special emphasis on how to solve various control design and observer design problems, nonlinear systems, interconnected systems, and singular systems. Featuring coverage on a broad range of topics, such as adaptive control, artificial neural network, and synchronization, this book is an important resource for engineers, professionals, and researchers interested in applying new computational and mathematical tools for solving the complicated problems of mathematical modeling, simulation, and control.




Vehicle Accident Analysis and Reconstruction Methods


Book Description

In this third edition of Vehicle Accident Analysis & Reconstruction Methods, Raymond M. Brach and R. Matthew Brach have expanded and updated their essential work for professionals in the field of accident reconstruction. Most accidents can be reconstructed effectively using of calculations and investigative and experimental data: the authors present the latest scientific, engineering, and mathematical reconstruction methods, providing a firm scientific foundation for practitioners. Accidents that cannot be reconstructed using the methods in this book are rare. In recent decades, the field of crash reconstruction has been transformed through the use of technology. The advent of event data records (EDRs) on vehicles signaled the era of modern crash reconstruction, which utilizes the same physical evidence that was previously available as well as electronic data that are measured/captured before, during, and after the collision. There is increased demand for more professional and accurate reconstruction as more crash data is available from vehicle sensors. The third edition of this essential work includes a new chapter on the use of EDRs as well as examples using EDR data in accident reconstruction. Early chapters feature foundational material that is necessary for the understanding of vehicle collisions and vehicle motion; later chapters present applications of the methods and include example reconstructions. As a result, Vehicle Accident Analysis & Reconstruction Methods remains the definitive resource in accident reconstruction.