E‐Cell System


Book Description

The interdisciplinary field of molecular systems biology aims to understand the behavior and mechanisms of biological processes composed of individual molecular components. As we gain more qualitative and quantitative information of complex intracellular processes, biochemical modeling and simulation become indispensable not only to uncover the molecular mechanisms of the processes, but to perform useful predictions. To this end, the E‐Cell System, a multi‐algorithm, multi‐timescale object‐oriented simulation platform, can be used to construct predictive virtual biological systems. Gene regulatory and biochemical networks that constitute a sub‐ or a whole cellular system can be constructed using the E‐Cell System to perform qualitative and quantitative analyses. The purpose of E‐Cell System: Basic Concepts and Applications is to provide a comprehensive guide for the E‐Cell System version 3 in terms of the software features and its usage. While the publicly available E‐Cell Simulation Environment version 3 User's Manual provides the technical details of model building and scripting, it does not describe some of the underlying concepts of the E‐Cell System. The first part of the book addresses this issue by providing the basic concepts of modeling and simulation with the E‐Cell System.







Invertebrate Cell System Applications


Book Description

A useful reference for those using or interested in cultured invertebrate cells, this two-volume text provides information about techniques and advances in invertebrate tissue culture. Cell lines for Insecta, Crustacea, Mollusca, and Nematoda are introduces along with their characterizations. Developments in insect biotechnology, including foreign protein production by insect cells infected with recombinant virus are described. Fundamental studies for introducing foreign genes into cultured insect cells is also presented. Wide information on studies -at cellular levels-on pathogens of insects, plants, and vertebrates is given.




Modeling and Control Strategies for a Fuel Cell System


Book Description

This book reports on a comprehensive study on the modeling, online and offline parameter estimation and control strategies for fuel cell systems. Upon reviewing the control-oriented modeling of proton-exchange membrane fuel cell systems (PEMFC) and solid oxide fuel cell systems (SOFC), it describes a new a set of methodologies to estimate the parameters of these models, both online and offline. In turn, it reports on the design of different control systems for PEMFC and SOFC. Experimental findings are shown to demonstrate the efficiency of the newly developed methods in practical applications, and their improved performance over classical methods.




Correlative Light and Electron MIcroscopy


Book Description

The combination of electron microscopy with transmitted light microscopy (termed correlative light and electron microscopy; CLEM) has been employed for decades to generate molecular identification that can be visualized by a dark, electron-dense precipitate. This new volume of Methods in Cell Biology covers many areas of CLEM, including a brief history and overview on CLEM methods, imaging of intermediate stages of meiotic spindle assembly in C. elegans embryos using CLEM, and capturing endocytic segregation events with HPF-CLEM. Covers many areas of CLEM by the best international scientists in the field Includes a brief history and overview on CLEM methods




Cell-Free Synthetic Biology


Book Description




Cellular Electron Microscopy


Book Description

Recent advances in the imaging technique electron microscopy (EM) have improved the method, making it more reliable and rewarding, particularly in its description of three-dimensional detail. Cellular Electron Microscopy will help biologists from many disciplines understand modern EM and the value it might bring to their own work. The book's five sections deal with all major issues in EM of cells: specimen preparation, imaging in 3-D, imaging and understanding frozen-hydrated samples, labeling macromolecules, and analyzing EM data. Each chapter was written by scientists who are among the best in their field, and some chapters provide multiple points of view on the issues they discuss. Each section of the book is preceded by an introduction, which should help newcomers understand the subject. The book shows why many biologists believe that modern EM will forge the link between light microscopy of live cells and atomic resolution studies of isolated macromolecules, helping us toward the goal of an atomic resolution understanding of living systems. - Updates the numerous technological innovations that have improved the capabilities of electron microscopy - Provides timely coverage of the subject given the significant rise in the number of biologists using light microscopy to answer their questions and the natural limitations of this kind of imaging - Chapters include a balance of "how to", "so what" and "where next", providing the reader with both practical information, which is necessary to use these methods, and a sense of where the field is going







The Cell Cycle


Book Description

The Cell Cycle: Principles of Control provides an engaging insight into the process of cell division, bringing to the student a much-needed synthesis of a subject entering a period of unprecedented growth as an understanding of the molecular mechanisms underlying cell division are revealed.




Whole Cell Sensing System II


Book Description

Applications: - Applications of Microbial Cell Sensors, by Mifumi Shimomura-Shimizu and Isao Karube - Whole-Cell Bioreporters for the Detection of Bioavailable Metals, by Anu Hynninen and Marko Virta - Bacteriophage-Based Pathogen Detection, by Steven Ripp - Cell-Based Genotoxicity Testing, by Georg Reifferscheid and Sebastian Buchinger - Cytotoxicity and Genotoxicity Reporter Systems Based on the Use of Mammalian Cells, by Christa Baumstark-Khan, Christine E. Hellweg, and Günther Reitz - Live Cell Optical Sensing for High Throughput Applications, by Ye Fang - Cyanobacterial Bioreporters as Sensors of Nutrient Availability, by George S. Bullerjahn, Ramakrishna Boyanapalli, Mark J. Rozmarynowycz, and R. Michael L. McKay - Application of Microbial Bioreporters in Environmental Microbiology and Bioremediation, by E. E. Diplock , H. A. Alhadrami , and G. I. Paton