Earth-Abundant Transition Metal Catalyzed Reactions


Book Description

Earth-Abundant Transition Metal Catalyzed Reactions, Volume 74 in the Advances in Catalysis series, highlights new advances in the field, with this new volume presenting interesting chapters. Each chapter is written by an international board of authors. Chapters in this new release include in Chiral Iron Complexes for Asymmetric Catalysis, Recent advances in Ni-catalyzed Functionalization of Strong C-O and C-H Bonds, Low-valent Molecular Cobalt Complexes for Reductive Chemistry, Iron-catalyzed group-transfer reactions with hypervalent iodine reagents, and Iron Porphyrins for Mediating Atom Efficient C–C Bond Formations. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in Advances in Catalysis serials - Updated release includes the latest information in the field




Metal-Catalysed Reactions of Hydrocarbons


Book Description

This unique book, drawing on the author’s lifetime experience, critically evaluates the extensive literature on the field of Metal-Catalysed Reactions of Hydrocarbons. Emphasis is placed on reaction mechanisms involving hydrogenation, hydrogenolysis, skeletal and positional isomerisation, and exchange reactions. The motivation for fundamental research in heterogeneous catalysis is to identify the physicochemical characteristics of active centres for the reaction being studied, to learn how these may be modified or manipulated to improve the desired behavior of the catalyst, and to recognize and control those aspects of the catalyst's structure that limit its overall performance. By restricting the subject of the book to hydrocarbons, Bond has progressively developed the subject matter to include areas of importance both to researchers and to those working in the industry.




Early Main Group Metal Catalysis


Book Description

Early Main Group Metal Catalysis gives a comprehensive overview of catalytic reactions in the presence of group 1 and group 2 metals. Chapters are ordered to reaction type, contain educational elements and deal with concepts illustrated by examples that cover the main developments. After a short introduction on polar organometallic chemistry and synthesis of early main group metal complexes, a variety of catalytic reactions are described, e.g. polymerization of alkenes, hydroamination and phosphination reactions, hydrosilylation, hydroboration and hydrogenation catalysis, as well as enantioselective and Lewis-acid catalysis. The book addresses organic chemists and researchers in industry interested in the state-of-the-art and new possibilities of early main group metal catalysis as well as newcomers to the field. Written by a team of leaders in the field, it is a very welcome addition to the area of main group metal chemistry, and to the field of catalysis.




Chiral Phosphorous Based Ligands in Earth-Abundant Transition Metal Catalysis


Book Description

Chiral Phosphorous Based Ligands in Earth-Abundant Transition Metal Catalysis summarizes the most significant progress in the field of chiral phosphine ligand chemistry and a broad range of earth-abundant transition metal/chiral phosphine ligand-catalyzed enantioselective transformations. The book provides an authoritative and in-depth understanding of important topics about asymmetric catalysis based on earth-abundant transition metals/chiral phosphine ligands, making it ideal for organic chemistry researchers working in the field of asymmetric catalysis, synthetic methodologies and total synthesis.The development of new chiral phosphine ligands to achieve precise stereo control in many earth-abundant transition metal-catalyzed reactions is a very important field in organic synthesis, materials science and medicinal chemistry. The asymmetric synthesis promoted by transition metal/chiral phosphine ligands provides one of the most ideal ways to produce valuable optically active chemicals. - Includes a discussion of state-of-the-art asymmetric organic reactions mediated by earth-abundant transition metals and chiral phosphine ligands - Features the progress and the prospect of chiral phosphine ligands in asymmetric transition metal catalysis - Covers the asymmetric reactivity modes of earth-abundant transition metals and phosphine ligands




Olefin Polymerization


Book Description

With an enormous velocity, olefin polymerization has expanded to one of the most significant fields in polymers since the first industrial use about 50 years ago. In 2005, 100 million tons of polyolefins were produced - the biggest part was catalyzed by metallorganic compounds. The Hamburg Macromolecular Symposium 2005 with the title "Olefin Polymerization" involved topics such as new catalysts and cocatalysts, kinetics, mechanism and polymer reaction engineering, synthesis of special polymers, and characterization of polyolefins. The conference combined scientists from different disciplines to discuss latest research results of polymers and to offer each other the possibility of cooperation. This is reflected in this volume, which contains invited lectures and selected posters presented at the symposium.




Redox-Active Ligands


Book Description

Redox-Active Ligands Authoritative resource showcasing a new family of ligands that can lead to better catalysts and promising applications in organic synthesis Redox-Active Ligands gives a comprehensive overview of the unique features of redox-active ligands, describing their structure and synthesis, the characterization of their coordination complexes, and important applications in homogeneous catalysis. The work reflects the diversity of the subject by including ongoing research spanning coordination chemistry, organometallic chemistry, bioinspired catalysis, proton and electron transfer, and the ability of such ligands to interact with early and late transition metals, lanthanides, and actinides. The book is divided into three parts, devoted to introduction and concepts, applications, and case studies. After the introduction on key concepts related to the field, and the different types of ligands and complexes in which ligand-centered redox activity is commonly observed, mechanistic and computational studies are described. The second part focuses on catalytic applications of redox-active complexes, including examples from radical transformations, coordination chemistry and organic synthesis. Finally, case studies of redox-active guanidine ligands, and of lanthanides and actinides are presented. Other specific sample topics covered include: An overview of the electronic features of redox-active ligands, covering their historical perspective and biological background The versatility and mode of action of redox-active ligands, which sets them apart from more classic and tunable ligands such as phosphines or N-heterocyclic carbenes Preparation and catalytic applications of complexes of stable N-aryl radicals Metal complexes with redox-active ligands in H+/e- transfer transformations By providing up-to-date information on important concepts and applications, Redox-Active Ligands is an essential reading for researchers working in organometallic and coordination chemistry, catalysis, organic synthesis, and (bio)inorganic chemistry, as well as newcomers to the field.




Catalysis with Earth-abundant Elements


Book Description

Considering the limited resources of our planet, earth-abundant elements will have to be explored increasingly in the future. This book highlights the uses of the most earth-abundant elements in catalysis and will be of interest to graduates, academic researchers and practitioners in catalysis.




Pincer Compounds


Book Description

Pincer Compounds: Chemistry and Applications offers valuable state-of-the-art coverage highlighting highly active areas of research—from mechanistic work to synthesis and characterization. The book focuses on small molecule activation chemistry (particularly H2 and hydrogenation), earth abundant metals (such as Fe), actinides, carbene-pincers, chiral catalysis, and alternative solvent usage. The book covers the current state of the field, featuring chapters from renowned contributors, covering four continents and ranging from still-active pioneers to new names emerging as creative strong contributors to this fascinating and promising area. Over a decade since the publication of Morales-Morales and Jensen's The Chemistry of Pincer Compounds (Elsevier 2007), research in this unique area has flourished, finding a plethora of applications in almost every single branch of chemistry—from their traditional application as very robust and active catalysts all the way to potential biological and pharmaceutical applications. - Describes the chemistry and applications of this important class of organometallic and coordination compounds - Includes contributions from global leaders in the field, featuring pioneers in the area as well as emerging experts conducting exciting research on pincer complexes - Highlights areas of promising and active research, including small molecule activation, earth abundant metals, and actinide chemistry




Spin States in Biochemistry and Inorganic Chemistry


Book Description

It has long been recognized that metal spin states play a central role in the reactivity of important biomolecules, in industrial catalysis and in spin crossover compounds. As the fields of inorganic chemistry and catalysis move towards the use of cheap, non-toxic first row transition metals, it is essential to understand the important role of spin states in influencing molecular structure, bonding and reactivity. Spin States in Biochemistry and Inorganic Chemistry provides a complete picture on the importance of spin states for reactivity in biochemistry and inorganic chemistry, presenting both theoretical and experimental perspectives. The successes and pitfalls of theoretical methods such as DFT, ligand-field theory and coupled cluster theory are discussed, and these methods are applied in studies throughout the book. Important spectroscopic techniques to determine spin states in transition metal complexes and proteins are explained, and the use of NMR for the analysis of spin densities is described. Topics covered include: DFT and ab initio wavefunction approaches to spin states Experimental techniques for determining spin states Molecular discovery in spin crossover Multiple spin state scenarios in organometallic reactivity and gas phase reactions Transition-metal complexes involving redox non-innocent ligands Polynuclear iron sulfur clusters Molecular magnetism NMR analysis of spin densities This book is a valuable reference for researchers working in bioinorganic and inorganic chemistry, computational chemistry, organometallic chemistry, catalysis, spin-crossover materials, materials science, biophysics and pharmaceutical chemistry.




Catalytic Hydroarylation of Carbon-Carbon Multiple Bonds


Book Description

Filling a gap in the literature, this book comprehensively reviews catalytic C-H addition reactions of (hetero)aromatic hydrocarbons across carbon-carbon multiple bonds. In so doing, it summarizes both the scope as well as the limitations of different catalyst systems and building blocks, while highlighting their application to the synthesis of pharmaceuticals as well as commodity chemicals. Focusing on the latest developments, the team of authors comprising leaders in the field covers such topics as the hydroarylation of olefins, alkyne hydroarylation in the presence of transition metal catalysts, reaction of alkynes with arylboronic acids, and allene hydroarylation, as well as the synthesis of functionalized arenes and heteroaromatics. A must-have for synthetic chemists in academia and industry dealing with catalysis, organometallic chemistry, the synthesis of natural products, fine chemicals, pharmaceuticals, products of the chemical industry and organic materials.