The Possibility of Earthquake Forecasting


Book Description

Separation of variables methods for solving partial differential equations are of immense theoretical and practical importance in mathematical physics. They are the most powerful tool known for obtaining explicit solutions of the partial differential equations of mathematical physics. The purpose of this book is to give an up-to-date presentation of the theory of separation of variables and its relation to superintegrability. Collating and presenting in a unified, updated and a more accessible manner the results scattered in the literature the authors have prepared an invaluable resource for mathematicians and mathematical physicists in particular, as well as science, engineering, geological and biological researchers interested in explicit solutions.




Earthquake Prediction


Book Description

Each year the world faces thousands of earthquakes of magnitude 5.0 or greater, resulting in devastating property destruction and tragic loss of life. To help avert these catastrophes, scientists have long searched for ways to predict when and where earthquakes will happen. The earth science establishment in the US says that earthquake prediction still lies outside the realm of possibility. But recent scientific developments across the globe suggest that seismic forecasting is on the horizon. Earthquake Prediction: Dawn of the New Seismology examines the latest scientific clues in hopes of discovering seismic precursors which may shed light on real earthquake prediction in the future. It is destined to be nothing less than an epoch-changing work, addressing this ancient enigma by joining the parts of a scientific detective story that ranges from the steppes of Russia to the coast of Chile, bringing to light astounding breakthroughs by researchers in Italy, India and elsewhere. Governments in countries such as China and Japan provide support for seismic forecasting, and it is time for our country to do the same. Earthquake Prediction makes the case, with an important message for the tens of millions of Americans on the US West Coast, the Mississippi River Valley, and other seismically active zones.




Advances in Earthquake Prediction


Book Description

The special natural conditions in Iceland as well as high level technology, were the basis for multidisciplinary and multinational cooperation for studying crustal processes, especially processes ahead of large earthquakes. This work leads to new innovative results and real time warnings which are described in the book. The results obtained in Iceland are of significance for earthquake prediction research worldwide.




Predicting the Unpredictable


Book Description

Why seismologists still can't predict earthquakes An earthquake can strike without warning and wreak horrific destruction and death, whether it's the catastrophic 2010 quake that took a devastating toll on the island nation of Haiti or a future great earthquake on the San Andreas Fault in California, which scientists know is inevitable. Yet despite rapid advances in earthquake science, seismologists still can’t predict when the Big One will hit. Predicting the Unpredictable explains why, exploring the fact and fiction behind the science—and pseudoscience—of earthquake prediction. Susan Hough traces the continuing quest by seismologists to forecast the time, location, and magnitude of future quakes. She brings readers into the laboratory and out into the field—describing attempts that have raised hopes only to collapse under scrutiny, as well as approaches that seem to hold future promise. She also ventures to the fringes of pseudoscience to consider ideas outside the scientific mainstream. An entertaining and accessible foray into the world of earthquake prediction, Predicting the Unpredictable illuminates the unique challenges of predicting earthquakes.




Seismogenesis and Earthquake Forecasting: The Frank Evison Volume II


Book Description

This special issue of Pure and Applied Geophysics is the second of two volumes containing an augmented collection of papers originating from the Evison Symposium on Seismogenesis and Earthquake Forecasting held in Wellington, New Zealand, in February 2008. The volumes honor Frank Evison's interest in earthquake generation and forecasting. This volume includes descriptions of earthquake forecasting test centers through the Collaboratory for the Study of Earthquake Predictability (CSEP) program and the first results from the Regional Earthquake Likelihood Model (RELM) experiment in California. Other papers discuss methods of testing predictions, in particular by the use of error diagrams. There is discussion of prediction methodologies using seismicity, including an application of the statistical technique of Hidden Markov Models to identify changes in seismicity and a new technique for identifying precursory quiescence. Several papers employ other data besides seismicity, such as geologically determined faults, calculations of stress changes via Coulomb stress modeling, tomographically determined velocity structure, groundwater, crustal deformation, and comparisons of real earthquakes to synthetic seismicity determined from hypothesized earthquake physics. One paper focuses on the prediction of human casualties in the event that a large earthquake occurs anywhere on the globe. The volume will be useful to students and professional researchers who are interested in the earthquake preparation process and in converting that understanding into forecasts of earthquake occurrence.




Pre-Earthquake Processes


Book Description

Pre-Earthquake signals are advanced warnings of a larger seismic event. A better understanding of these processes can help to predict the characteristics of the subsequent mainshock. Pre-Earthquake Processes: A Multidisciplinary Approach to Earthquake Prediction Studies presents the latest research on earthquake forecasting and prediction based on observations and physical modeling in China, Greece, Italy, France, Japan, Russia, Taiwan, and the United States. Volume highlights include: Describes the earthquake processes and the observed physical signals that precede them Explores the relationship between pre-earthquake activity and the characteristics of subsequent seismic events Encompasses physical, atmospheric, geochemical, and historical characteristics of pre-earthquakes Illustrates thermal infrared, seismo–ionospheric, and other satellite and ground-based pre-earthquake anomalies Applies these multidisciplinary data to earthquake forecasting and prediction Written for seismologists, geophysicists, geochemists, physical scientists, students and others, Pre-Earthquake Processes: A Multidisciplinary Approach to Earthquake Prediction Studies offers an essential resource for understanding the dynamics of pre-earthquake phenomena from an international and multidisciplinary perspective.










Earthquakes


Book Description

This book is the first comprehensive and methodologically rigorous analysis of earthquake occurrence. Models based on the theory of the stochastic multidimensional point processes are employed to approximate the earthquake occurrence pattern and evaluate its parameters. The Author shows that most of these parameters have universal values. These results help explain the classical earthquake distributions: Omori's law and the Gutenberg-Richter relation. The Author derives a new negative-binomial distribution for earthquake numbers, instead of the Poisson distribution, and then determines a fractal correlation dimension for spatial distributions of earthquake hypocenters. The book also investigates the disorientation of earthquake focal mechanisms and shows that it follows the rotational Cauchy distribution. These statistical and mathematical advances make it possible to produce quantitative forecasts of earthquake occurrence. In these forecasts earthquake rate in time, space, and focal mechanism orientation is evaluated.




Active Global Seismology


Book Description

Neotectonics involves the study of the motions and deformations of the Earth's crust that are current or recent in geologic time. The Mediterranean region is one of the most important regions for neotectonics and related natural hazards. This volume focuses on the neotectonics of the Eastern Mediterranean region, which has experienced many major extensive earthquakes, including the devastating Izmit, Turkey earthquake on August 17, 1999. The event lasted for 37 seconds, killing around 17,000 people, injuring 44,000 people, and leaving approximately half a million people homeless. Since then, several North American, European, and Turkish research groups have studied the neotectonics and earthquake potential of the region using different geological and geophysical methods, including GPS studies, geodesy, and passive source seismology. Some results from their studies were presented in major North American and European geological meetings. This volume highlights the work involving the Eastern Mediterranean region, which has one of the world's longest and best studied active strike-slip (horizontal motion) faults: the east-west trending North Anatolian fault zone, which is very similar to the San Andreas fault in California. This volume features discussions of: Widespread applications in measuring plate motion that have strong implications in predicting natural disasters like earthquakes, both on a regional and a global scale Recent motions, particularly those produced by earthquakes, that provide insights on the physics of earthquake recurrence, the growth of mountains, orogenic movements, and seismic hazards Unique methodical approaches in collecting tectonophysical data, including field, seismic, experimental, computer-based, and theoretical approaches. Active Global Seismology is a valuable resource for geoscientists, particularly in the field of tectonophysics, geophysics, geodynamics, seismology, structural geology, environmental geology, and geoengineering. Read an interview with the editors to find out more: https://eos.org/editors-vox/neotectonics-and-earthquake-forecasting