Earthquake Loss Estimation Methodology


Book Description

"HAZUS is designed to produce loss estimates for use by state, regional, and local government in planning for earthquake loss mitigation, emergency preparedness, and response and recovery"--Page v










Hazus-MH 2.1 Canada, User and Technical Manual


Book Description

This manual was created for Canadian GIS users who want to run an earthquake loss estimation scenario using Hazus Canada. Hazus was developed by the US National Institute of Building Science (NIBS), in partnership with the Federal Emergency Management Agency (FEMA), to provide a national standard methodology for modelling the potential physical, economic and social impacts from earthquakes, hurricanes, and floods. Hazus outputs and analyses have many applications and have been used in a variety of sectors, including the insurance, geotechnical engineering, emergency management, city planning, and building planning sectors. This guide assists the user in running an analysis for an earthquake hazard scenario in Canada. The guide is intended to be used as a complement to existing Hazus guides published by FEMA and available online. This document provides guidance on differences and adaptations for the Canadian user and provides support to enable the running of Hazus in a Canadian study area.




Recommended Seismic Evaluation and Upgrade Criteria for Existing Welded Steel Moment-Frame Buildings (FEMA 351)


Book Description

This report, FEMA-351 - Recommended Seismic Evaluation and Upgrade Criteria for Existing Welded Steel Moment-Frame Buildings has been developed by the SAC Joint Venture under contract to the Federal Emergency Management Agency (FEMA) to provide structural engineers with recommended criteria for evaluation of the probable performance of existing steel moment-frame buildings in future earthquakes and to provide a basis for updating and revision of evaluation and rehabilitation guidelines and standards. It is one of a series of companion publications addressing the issue of the seismic performance of steel moment-frame buildings. The set of companion publications includes: FEMA-350 - Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings. This publication provides recommended criteria, supplemental to FEMA-302 - 1997 NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures, for the design and construction of steel moment-frame buildings and provides alternative performance-based design criteria. FEMA-351 - Recommended Seismic Evaluation and Upgrade Criteria for Existing Welded Steel Moment-Frame Buildings. This publication provides recommended methods to evaluate the probable performance of existing steel moment-frame buildings in future earthquakes and to retrofit these buildings for improved performance. FEMA-352 - Recommended Postearthquake Evaluation and Repair Criteria for Welded Steel Moment-Frame Buildings. This publication provides recommendations for performing postearthquake inspections to detect damage in steel moment-frame buildings following an earthquake, evaluating the damaged buildings to determine their safety in the postearthquake environment, and repairing damaged buildings. FEMA-353 - Recommended Specifications and Quality Assurance Guidelines for Steel Moment-Frame Construction for Seismic Applications. This publication provides recommended specifications for the fabrication and erection of steel moment frames for seismic applications. The recommended design criteria contained in the other companion documents are based on the material and workmanship standards contained in this document, which also includes discussion of the basis for the quality control and quality assurance criteria contained in the recommended specifications. The information contained in these recommended evaluation and upgrade criteria, hereinafter referred to as Recommended Criteria, is presented in the form of specific recommendations for design and performance evaluation procedures together with supporting commentary explaining part of the basis for these recommendations.







HAZUS(r) MH Estimated Annualized Earthquake Losses for the United States (FEMA 366 / April 2008)


Book Description

Recent earthquakes around the world show a pattern of steadily increasing damages and losses that are due primarily to two factors: (1) significant growth in earthquake-prone urban areas and (2) vulnerability of the older building stock, including buildings constructed within the past 20 years. In the United States, earthquake risk has grown substantially with development while the earthquake hazard has remained relatively constant. Understanding the hazard requires studying earthquake characteristics and locales in which they occur while understanding the risk requires an assessment of the potential damage to the built environment and to the welfare of people - especially in high risk areas. Estimating the varying degree of earthquake risk throughout the United States is useful for informed decision-making on mitigation policies, priorities, strategies, and funding levels in the public and private sectors. For example, potential losses to new buildings may be reduced by applying seismic design codes and using specialized construction techniques. However, decisions to spend money on either of those solutions require evidence of risk. In the absence of a nationally accepted criterion and methodology for comparing seismic risk across regions, a consensus on optimal mitigation approaches has been difficult to reach. While there is a good understanding of high risk areas such as Los Angeles, there is also growing recognition that other regions such as New York City and Boston have a low earthquake hazard but are still at high risk of significant damage and loss. This high risk level reflects the dense concentrations of buildings and infrastructure in these areas constructed without the benefit of modern seismic design provisions. In addition, mitigation policies and practices may not have been adopted because the earthquake risk was not clearly demonstrated and the value of using mitigation measures in reducing that risk may not have been understood. This study highlights the impacts of both high risk and high exposure on losses caused by earthquakes. It is based on loss estimates generated by HAZUS(R)-MH, a geographic information system (GIS)-based earthquake loss estimation tool developed by the Federal Emergency Management Agency (FEMA) in cooperation with the National Institute of Building Sciences (NIBS). The HAZUS tool provides a method for quantifying future earthquake losses. It is national in scope, uniform in application, and comprehensive in its coverage of the built environment.