The Mechanics of Earthquakes and Faulting


Book Description

Our understanding of earthquakes and faulting processes has developed significantly since publication of the successful first edition of this book in 1990. This revised edition, first published in 2002, was therefore thoroughly up-dated whilst maintaining and developing the two major themes of the first edition. The first of these themes is the connection between fault and earthquake mechanics, including fault scaling laws, the nature of fault populations, and how these result from the processes of fault growth and interaction. The second major theme is the central role of the rate-state friction laws in earthquake mechanics, which provide a unifying framework within which a wide range of faulting phenomena can be interpreted. With the inclusion of two chapters explaining brittle fracture and rock friction from first principles, this book is written at a level which will appeal to graduate students and research scientists in the fields of seismology, physics, geology, geodesy and rock mechanics.







Geotechnical Applications for Earthquake Engineering: Research Advancements


Book Description

Disaster preparedness and response management is a burgeoning field of technological research, and staying abreast of the latest developments within the field is a difficult task. Geotechnical Applications for Earthquake Engineering: Research Advancements has collected chapters from experts from around the world in a variety of applications, frameworks, and methodologies, and prepared them in a form that serves as a handy reference and research guide to practitioners and academics alike. By protecting society with earthquake engineering, the latest research can make the world a safer place.




Rock Stress and Earthquakes


Book Description

The evaluation of in-situ rock stress is not only important in the exploration and engineering involving rock masses for mining, hydropower, tunneling, oil and gas production, and stone quarrying, but also in the geodynamics and earthquake prediction. The methods of determining these stresses for shallow crust in the engineering practice, including




KWIC Index of Rock Mechanics Literature


Book Description

KWIC Index of Rock Mechanics Literature, Part 2: 1969-1976 is an index of subjects in rock mechanics. The KWIC (keyword-in-context) index is produced by cyclic permutation of significant words in the title of the publication. The text covers materials in rock mechanics and geomechanics published around the 70s. The book will be of great use to students, researchers, and practitioners of geological sciences.




Rock Dynamics: Progress and Prospect, Volume 1


Book Description

Rock Dynamics: Progress and Prospect contains 153 scientific and technical papers presented at the Fourth International Conference on Rock Dynamics and Applications (RocDyn-4, Xuzhou, China, 17-19 August 2022). The two-volume set has 7 sections. Volume 1 includes the first four sections with 6 keynotes and 5 young scholar plenary session papers, and contributions on analysis and theoretical development, and experimental testing and techniques. Volume 2 contains the remaining three sections with 74 papers on numerical modelling and methods, seismic and earthquake engineering, and rock excavation and engineering. Rock Dynamics: Progress and Prospect will serve as a reference on developments in rock dynamics scientific research and on rock dynamics engineering applications. The previous volumes in this series (RocDyn-1, RocDyn-2, and RocDyn-3) are also available via CRC Press.




Practical Approaches to Earthquake Prediction and Warning


Book Description

A seminar on "Practical Approaches to Earthquake Prediction and Warning" was held in Tokyo and Tsukuba, Japan on November 7-11, 1983. This was the sixth seminar on earthquake prediction in the framework of the U.S.-Japan Cooperation in Science Program, a series that was initiated in 1964. The Japan Society for the Promotion of Science and the National Science Foundation of the U.S.A. sponsored the seminar. The U.S. Geological Survey gave substantial additional support by sen ding a number of scientists to the seminar. C. H. Scholz, Columbia University, and T. Rikitake, Nihon University, were the co-convenors on behalf of the U.S.A. and Japan, respectively. 23 Japanese and 23 American delegates and observers took part in the seminar. Forty papers were presented during the three days of scientific sessions at the Interna tional House of Japan, Roppongi, Tokyo, November 7-9. The other two days were spent on a field trip to Tsukuba Science City, where national laboratories engaged in earthquake prediction research and other aspects of earthquake hazard reduction have been established by several agencies of the Japanese Government. The program of the scientific sessions was organized according to the following topics: 1. The national programs of Japan and the U.S.A. 2. Theory and long-term earthquake prediction. 3. Strain and stress. 4. Observation systems. 5. Various precursors. 6. Social response, public policy and earthquake engineering.




Rock Mechanics and Rock Engineering


Book Description

Rock Mechanics and Rock Engineering is concerned with the application of the principles of mechanics to physical, chemical and electro-magnetic processes in the upper-most layers of the earth and the design and construction of the rock structures associated with civil engineering and exploitation or extraction of natural resources in mining and petroleum engineering. Rock mechanics requires profound knowledge of rock-constituting elements, discontinuities and their behavior under various physical and chemical actions in nature. The governing equations together with constitutive laws and experimental techniques and the solution techniques are explained and some examples of applications are given. The applications of rock mechanics to engineering structures in/on rock, rock excavation techniques and in-situ monitoring techniques are explained and some specific examples are given. The dynamic aspects associated with the science of earthquakes and their effect on rock structures, and the characteristics of vibrations induced by machinery, blasting and impacts as well as measuring techniques are described. Furthermore, the degradation and maintenance processes in rock engineering are explained. Some chapters are devoted to possible new directions in rock mechanics. This two-volume set is intended to be a fundamental resource for younger generations and newcomers and a reference work for experts specialized in Rock Mechanics and Rock Engineering and associated with the fields of mining, civil and petroleum engineering, engineering geology, and/or specialized in Geophysics and concerned with earthquake science and engineering.