Book Description
Ebook: Vector Mechanics Engineering: Dynamics SI
Author : BEER
Publisher : McGraw Hill
Page : 779 pages
File Size : 44,24 MB
Release : 2010-12-16
Category : Technology & Engineering
ISBN : 0077147650
Ebook: Vector Mechanics Engineering: Dynamics SI
Author : Ferdinand Beer
Publisher : McGraw Hill
Page : 830 pages
File Size : 12,32 MB
Release : 2013-04-16
Category : Technology & Engineering
ISBN : 0077173600
Continuing in the spirit of its successful previous editions, the tenth edition of Beer, Johnston, Mazurek, and Cornwell's Vector Mechanics for Engineers provides conceptually accurate and thorough coverage together with a significant refreshment of the exercise sets and online delivery of homework problems to your students. Nearly forty percent of the problems in the text are changed from the previous edition. The Beer/Johnston textbooks introduced significant pedagogical innovations into engineering mechanics teaching. The consistent, accurate problem-solving methodology gives your students the best opportunity to learn statics and dynamics. At the same time, the careful presentation of content, unmatched levels of accuracy, and attention to detail have made these texts the standard for excellence.
Author : Ferdinand Beer
Publisher : McGraw Hill
Page : 656 pages
File Size : 25,99 MB
Release : 2012-10-16
Category : Technology & Engineering
ISBN : 0077173619
Target AudienceThis text is designed for the first course in Statics offered in the sophomore year. OverviewThe main objective of a first course in mechanics should be to develop in the engineering student the ability to analyze any problem in a simple and logical manner and to apply to its solution a few, well-understood, basic principles. This text is designed to help the instructor achieve this goal. Vector analysis is introduced early in the text and is used in the presentation and discussion of the fundamental principles of mechanics. Vector methods are also used to solve many problems, particularly three-dimensional problems where these techniques result in a simpler and more concise solution. The emphasis in this text, however, remains on the correct understanding of the principles of mechanics and on their application to the solution of engineering problems, and vector analysis is presented chiefly as a convenient tool. In order to achieve the goal of being able to analyze mechanics problems, the text employs the following pedagogical strategy: Practical applications are introduced early. New concepts are introduced simply. Fundamental principles are placed in simple contexts. Students are given extensive practice through: sample problems, special sections entitled Solving Problems on Your Own, extensive homework problem sets, review problems at the end of each chapter, and computer problems designed to be solved with computational software. Resources Supporting This Textbook Instructor’s and Solutions Manual features typeset, one-per-page solutions to the end of chapter problems. It also features a number of tables designed to assist instructors in creating a schedule of assignments for their course. The various topics covered in the text have been listed in Table I and a suggested number of periods to be spent on each topic has been indicated. Table II prepares a brief description of all groups of problems. Sample lesson schedules are shown in Tables III, IV, and V, together with various alternative lists of assigned homework problems. For additional resources related to users of this SI edition, please visit http://www.mheducation.asia/olc/beerjohnston. McGraw-Hill Connect Engineering, a web-based assignment and assessment platform, is available at http://www.mhhe.com/beerjohnston, and includes algorithmic problems from the text, Lecture PowerPoints, an image bank, and animations. Hands-on Mechanics is a website designed for instructors who are interested in incorporating three-dimensional, hands-on teaching aids into their lectures. Developed through a partnership between the McGraw-Hill Engineering Team and the Department of Civil and Mechanical Engineering at the United States Military Academy at West Point, this website not only provides detailed instructions for how to build 3-D teaching tools using materials found in any lab or local hardware store, but also provides a community where educators can share ideas, trade best practices, and submit their own original demonstrations for posting on the site. Visit http://www.handsonmechanics.com. McGraw-Hill Tegrity, a service that makes class time available all the time by automatically capturing every lecture in a searchable format for students to review when they study and complete assignments. To learn more about Tegrity watch a 2-minute Flash demo at http://tegritycampus.mhhe.com.
Author : BEER
Publisher : McGraw Hill
Page : 648 pages
File Size : 18,69 MB
Release : 2010-10-16
Category : Technology & Engineering
ISBN : 0077147685
Ebook: Vector Mechanics for Engineers: Statics and Dynamics
Author : Dara W. Childs
Publisher : CRC Press
Page : 472 pages
File Size : 34,52 MB
Release : 2015-04-17
Category : Science
ISBN : 1482250268
Observing that most books on engineering dynamics left students lacking and failing to grasp the general nature of dynamics in engineering practice, the authors of Dynamics in Engineering Practice, Eleventh Edition focused their efforts on remedying the problem. This text shows readers how to develop and analyze models to predict motion. While esta
Author : Howard D. Curtis
Publisher : Elsevier
Page : 740 pages
File Size : 21,12 MB
Release : 2009-10-26
Category : Technology & Engineering
ISBN : 0080887848
Orbital Mechanics for Engineering Students, Second Edition, provides an introduction to the basic concepts of space mechanics. These include vector kinematics in three dimensions; Newton's laws of motion and gravitation; relative motion; the vector-based solution of the classical two-body problem; derivation of Kepler's equations; orbits in three dimensions; preliminary orbit determination; and orbital maneuvers. The book also covers relative motion and the two-impulse rendezvous problem; interplanetary mission design using patched conics; rigid-body dynamics used to characterize the attitude of a space vehicle; satellite attitude dynamics; and the characteristics and design of multi-stage launch vehicles. Each chapter begins with an outline of key concepts and concludes with problems that are based on the material covered. This text is written for undergraduates who are studying orbital mechanics for the first time and have completed courses in physics, dynamics, and mathematics, including differential equations and applied linear algebra. Graduate students, researchers, and experienced practitioners will also find useful review materials in the book. - NEW: Reorganized and improved discusions of coordinate systems, new discussion on perturbations and quarternions - NEW: Increased coverage of attitude dynamics, including new Matlab algorithms and examples in chapter 10 - New examples and homework problems
Author : Ferdinand Pierre Beer
Publisher :
Page : 779 pages
File Size : 21,28 MB
Release : 2006
Category : Résistance des matériaux
ISBN : 9780071249997
Available January 2005 For the past forty years Beer and Johnston have been the uncontested leaders in the teaching of undergraduate engineering mechanics. Their careful presentation of content, unmatched levels of accuracy, and attention to detail have made their texts the standard for excellence. The revision of their classic Mechanics of Materials features an updated art and photo program as well as numerous new and revised homework problems.The text's superior Online Learning Center (www.mhhe.com/beermom4e) includes an extensive Self-paced, Mechanics, Algorithmic, Review and Tutorial (S.M.A.R.T.), created by George Staab and Brooks Breeden of The Ohio State University, that provides students with additional help on key concepts. The custom website also features animations for each chapter, lecture powerpoints, and other online resources for both instructors and students.
Author : John Bird
Publisher : Routledge
Page : 313 pages
File Size : 11,67 MB
Release : 2012-05-04
Category : Technology & Engineering
ISBN : 1136325840
"Mechanical Engineering Principles offers a student-friendly introduction to core engineering topics that does not assume any previous background in engineering studies, and as such can act as a core textbook for several engineering courses. Bird and Ross introduce mechanical principles and technology through examples and applications rather than theory. This approach enables students to develop a sound understanding of the engineering principles and their use in practice. Theoretical concepts are supported by over 600 problems and 400 worked answers. The new edition will match up to the latest BTEC National specifications and can also be used on mechanical engineering courses from Levels 2 to 4"--
Author : William J. Bottega
Publisher : CRC Press
Page : 919 pages
File Size : 29,97 MB
Release : 2014-12-11
Category : Technology & Engineering
ISBN : 1439830371
A thorough study of the oscillatory and transient motion of mechanical and structural systems, Engineering Vibrations, Second Edition presents vibrations from a unified point of view, and builds on the first edition with additional chapters and sections that contain more advanced, graduate-level topics. Using numerous examples and case studies, the author reviews basic principles, incorporates advanced abstract concepts from first principles, and weaves together physical interpretation and fundamental principles with applied problem solving. This revised version combines the physical and mathematical facets of vibration, and emphasizes the connecting ideas, concepts, and techniques.
Author : Reza N. Jazar
Publisher : Springer Science & Business Media
Page : 1074 pages
File Size : 23,39 MB
Release : 2013-11-19
Category : Technology & Engineering
ISBN : 1461485444
This textbook is appropriate for senior undergraduate and first year graduate students in mechanical and automotive engineering. The contents in this book are presented at a theoretical-practical level. It explains vehicle dynamics concepts in detail, concentrating on their practical use. Related theorems and formal proofs are provided, as are real-life applications. Students, researchers and practicing engineers alike will appreciate the user-friendly presentation of a wealth of topics, most notably steering, handling, ride, and related components. This book also: Illustrates all key concepts with examples Includes exercises for each chapter Covers front, rear, and four wheel steering systems, as well as the advantages and disadvantages of different steering schemes Includes an emphasis on design throughout the text, which provides a practical, hands-on approach