Ecological and Evolutionary Genetics of Drosophila


Book Description

Ecological and evolutionary genetics span many disciplines and virtually all levels of biological investigation, from the genetic information itself to the principles governing the complex organization of living things. The ideas and informa tion generated by ecological and evolutionary genetics provide the substance for strong inferences on the origins, changes and patterns of structural and functional organization in bio logical communi ties. It is the coordination of these ideas and thoughts that will provide the answers to many fundamental questions in biology. There is no doubt that Drosophilids provide strong model systems amenable to experimental manipulation and useful for testing pertinent hypotheses in ecological and evolutionary genetics. The chapters in this volume represent efforts to use Drosophila species for such a purpose. The volume consists of a dedication to William B. Heed, followed by four major sections: Ecological Genetics, Habitat Selection, Biochemical Genetics and Molecular Evolution. Each section is introduced by a short statement, and each chapter has an independent summary. The chapters contain the sub stance of talks given at a joint Australia-US workshop held January 5-10, 1989 at the University of New England, New South Wales, Australia. We are indebted to the Division of International Programs of the National Science Foundation (USA) and to the Science and Technology Collaboration Section of the Department of Industry, Technology and Commerce (Australia) for the provi sion of financial support under the US/Australia Science and Technology Agreement. Many people contributed to the preparation of this volume.




Ecological Genomics


Book Description

Researchers in the field of ecological genomics aim to determine how a genome or a population of genomes interacts with its environment across ecological and evolutionary timescales. Ecological genomics is trans-disciplinary by nature. Ecologists have turned to genomics to be able to elucidate the mechanistic bases of the biodiversity their research tries to understand. Genomicists have turned to ecology in order to better explain the functional cellular and molecular variation they observed in their model organisms. We provide an advanced-level book that covers this recent research and proposes future development for this field. A synthesis of the field of ecological genomics emerges from this volume. Ecological Genomics covers a wide array of organisms (microbes, plants and animals) in order to be able to identify central concepts that motivate and derive from recent investigations in different branches of the tree of life. Ecological Genomics covers 3 fields of research that have most benefited from the recent technological and conceptual developments in the field of ecological genomics: the study of life-history evolution and its impact of genome architectures; the study of the genomic bases of phenotypic plasticity and the study of the genomic bases of adaptation and speciation.




In the Light of Evolution


Book Description

The Arthur M. Sackler Colloquia of the National Academy of Sciences address scientific topics of broad and current interest, cutting across the boundaries of traditional disciplines. Each year, four or five such colloquia are scheduled, typically two days in length and international in scope. Colloquia are organized by a member of the Academy, often with the assistance of an organizing committee, and feature presentations by leading scientists in the field and discussions with a hundred or more researchers with an interest in the topic. Colloquia presentations are recorded and posted on the National Academy of Sciences Sackler colloquia website and published on CD-ROM. These Colloquia are made possible by a generous gift from Mrs. Jill Sackler, in memory of her husband, Arthur M. Sackler.




Drosophila


Book Description

Anyone wishing to tap the research potential of the hundreds of Drosophila species in addition to D.melanogaster will finally have a single comprehensive resource for identifying, rearing and using this diverse group of insects. This is the only group of higher eukaryotes for which the genomes of 12 species have been sequenced.The fruitfly Drosophila melanogaster continues to be one of the greatest sources of information regarding the principles of heredity that apply to all animals, including humans. In reality, however, over a thousand different species of Drosophila exist, each with the potential to make their own unique contributions to the rapidly changing fields of genetics and evolution. This book, by providing basic information on how to identify and breed these other fruitflies, will allow investigators to take advantage, on a large scale, of the valuable qualities of these other Drosophila species and their newly developed genomic resources to address critical scientific questions.* Provides easy to use keys and illustrations to identify different Drosophila species* A guide to the life history differences of hundreds of species* Worldwide distribution maps of hundreds of species* Complete recipes for different Drosophila diets* Offers an analysis on how to account for species differences in designing and conducting experiments* Presents useful ideas of how to collect the many different Drosophila species in the wild




Conceptual Breakthroughs in Evolutionary Ecology


Book Description

Although biologists recognize evolutionary ecology by name, many only have a limited understanding of its conceptual roots and historical development. Conceptual Breakthroughs in Evolutionary Ecology fills that knowledge gap in a thought-provoking and readable format. Written by a world-renowned evolutionary ecologist, this book embodies a unique blend of expertise in combining theory and experiment, population genetics and ecology. Following an easily-accessible structure, this book encapsulates and chronologizes the history behind evolutionary ecology. It also focuses on the integration of age-structure and density-dependent selection into an understanding of life-history evolution. - Covers over 60 seminal breakthroughs and paradigm shifts in the field of evolutionary biology and ecology - Modular format permits ready access to each described subject - Historical overview of a field whose concepts are central to all of biology and relevant to a broad audience of biologists, science historians, and philosophers of science




A Primer of Ecological Genetics


Book Description

This book covers basic concepts in population and quantitative genetics, including measuring selection on phenotypic traits. The emphasis is on material applicable to field studies of evolution focusing on ecologically important traits. Topics addressed are critical for training students in ecology, evolution, conservation biology, agriculture, forestry, and wildlife management. Many texts in this field are too complex and mathematical to allow the average beginning student to readily grasp the key concepts. A Primer of Ecological Genetics, in contrast, employs mathematics and statistics-fully explained, but at a less advanced level-as tools to improve understanding of biological principles. The main goal is to enable students to understand the concepts well enough that they can gain entry into the primary literature. Integration of the different chapters of the book shows students how diverse concepts relate to each other.




Fruit Flies (Tephritidae)


Book Description

Fruit flies (Diptera: Tephritidae) are among the most destructive agricultural pests in the world, eating their way through acres and acres of citrus and other fruits at an alarming rate and forcing food and agriculture agencies to spend millions of dollars in control and management measures. But until now, the study of fruit flies has been traditionally biased towards applied aspects (e.g., management, monitoring, and mass rearing)-understandable, given the tremendous economic impact of this species. This work is the first that comprehensively addresses the study of the phylogeny and the evolution of fruit fly behavior. An international group of highly renowned scientists review the current state of knowledge and include considerable new findings on various aspects of fruit fly behavior, phylogeny and related subjects. In the past, the topics of phylogeny and evolution of behavior were barely addressed, and when so, often superficially. Fruit Flies (Tephritidae): Phylogeny and Evolution of Behavior is a definitive treatment, covering all behaviors in a broad range of tephritids. This volume is divided into eight sections:




Essays in Evolution and Genetics in Honor of Theodosius Dobzhansky


Book Description

It is not often that one has the opportunity to send a public birthday greet ing to a friend and colleague of many years, and to congratulate him on having reached the age of reason. In fact it happens only once, and comes then as a surprise. Surely it was only a few years ago that we sat together at an International Genetics Congress in Ithaca, and only yesterday that we became members of the same department. The eighth floor of Schermerhorn Hall had a north end where the flies were and a south end furnished with mice, and in between, a seminar room and laboratory. There the distances were short and the doors open and the coffee pot busy. But it now appears that yesterday has fallen thirty years behind and that we have grown up. I find it interesting and appropriate that Dobzhansky's lifetime spans the period of maturation of the fields to which this volume is devoted. This is true in a chronological sense for his birth occurred in the same year, 1900, in which modern genetics began. The rediscovery of Mendel's princi ples and the interpretation of the nature of heredity and variation to which this event led were necessary prerequisites to the development of evolution ary biology as presented in this collection of essays.




Drosophila melanogaster, Drosophila simulans: So Similar, So Different


Book Description

This book brings together most of the information available concerning two species that diverged 2-3 million years ago. The objective was to try to understand why two sibling species so similar in several characteristics can be so different in others. To this end, it was crucial to confront all data from their ecology and biogeography with their behavior and DNA polymorphism. Drosophila melanogaster and Drosophila simulans are among the two sibling species for which a large set of data is available. In this book, ecologists, physiologists, geneticists, behaviorists share their data on the two sibling species, and several scenarios of evolution are put forward to explain their similarities and divergences. This is the first collection of essays of its kind. It is not the final point of the analyses of these two species since several areas remain obscure. However, the recent publication of the complete genome of D. melanogaster opens new fields for research. This will probably help us explain why D. melanogaster and D. simulans are sibling species but false friends.