A Practical Guide to Ecological Modelling


Book Description

Mathematical modelling is an essential tool in present-day ecological research. Yet for many ecologists it is still problematic to apply modelling in their research. In our experience, the major problem is at the conceptual level: proper understanding of what a model is, how ecological relations can be translated consistently into mathematical equations, how models are solved, steady states calculated and interpreted. Many textbooks jump over these conceptual hurdles to dive into detailed formulations or the mathematics of solution. This book attempts to fill that gap. It introduces essential concepts for mathematical modelling, explains the mathematics behind the methods, and helps readers to implement models and obtain hands-on experience. Throughout the book, emphasis is laid on how to translate ecological questions into interpretable models in a practical way. The book aims to be an introductory textbook at the undergraduate-graduate level, but will also be useful to seduce experienced ecologists into the world of modelling. The range of ecological models treated is wide, from Lotka-Volterra type of principle-seeking models to environmental or ecosystem models, and including matrix models, lattice models and sequential decision models. All chapters contain a concise introduction into the theory, worked-out examples and exercises. All examples are implemented in the open-source package R, thus taking away problems of software availability for use of the book. All code used in the book is available on a dedicated website.




Ecological Models and Data in R


Book Description

Introduction and background; Exploratory data analysis and graphics; Deterministic functions for ecological modeling; Probability and stochastic distributions for ecological modeling; Stochatsic simulation and power analysis; Likelihood and all that; Optimization and all that; Likelihood examples; Standar statistics revisited; Modeling variance; Dynamic models.




Ecological Modeling


Book Description

Ecological Modeling:A Commonsense Approach to Theory and Practice explores how simulation modeling and its new ecological applications can offer solutions to complex natural resource management problems. This is a practical guide for students, teachers, and professional ecologists. Examines four phases of the modeling process: conceptual model formulation, quantitative model specification, model evaluation, and model use Provides useful building blocks for constructing systems simulation models Includes a format for reporting the development and use of simulation models Offers an integrated systems perspective for students, faculty, and professionals Features helpful insights from the author, gained over 30 years of university teaching "I can strongly recommend the book as textbook for all courses in population dynamic modeling particularly when the course is planned for the second or third year of a bachelor study in ecology, environmental science or ecological engineering. It uncovers very clearly for the readers the scientific idea and thinking behind modeling and all the necessary steps in the development of models." Ecological Modeling Journal, 2009




Ecological Modelling and Ecophysics


Book Description

This book focuses on use-inspired basic science by connecting theoretical methods and mathematical developments in ecology with practical real-world problems, either in production or conservation.




Modelling Complex Ecological Dynamics


Book Description

Model development is of vital importance for understanding and management of ecological processes. Identifying the complex relationships between ecological patterns and processes is a crucial task. Ecological modelling—both qualitatively and quantitatively—plays a vital role in analysing ecological phenomena and for ecological theory. This textbook provides a unique overview of modelling approaches. Representing the state-of-the-art in modern ecology, it shows how to construct and work with various different model types. It introduces the background of each approach and its application in ecology. Differential equations, matrix approaches, individual-based models and many other relevant modelling techniques are explained and demonstrated with their use. The authors provide links to software tools and course materials. With chapters written by leading specialists, “Modelling Complex Ecological Dynamics” is an essential contribution to expand the qualification of students, teachers and scientists alike.




Ecological Modeling


Book Description

Ecological Modeling: An Introduction to the Art and Science of Modeling Ecological Systems, Volume 31, presents the skills needed to appropriately evaluate and use ecological models. Illustrated throughout with practical examples, the book discusses ecological modeling as both an art and a science, balancing the qualitative (artistic) side, with its foundations in common sense and modeling practice, against the quantitative (scientific) aspects of the modeling process. This book draws on the authors’ extensive experience in both teaching and using these techniques to provide readers with a practical, user-friendly guide that supports and encourages the appropriate, effective use of these tools. Provides readers with a commonsense understanding of the systems perspective and its foundations in general system theory Highlights the importance of a solid understanding of the qualitative aspects of the modeling process Facilitates the ability to appropriately evaluate and use ecological models Supports learning with a variety of simple examples to instill the desire and confidence to embark upon the modeling experience




Spatial Ecology and Conservation Modeling


Book Description

This book provides a foundation for modern applied ecology. Much of current ecology research and conservation addresses problems across landscapes and regions, focusing on spatial patterns and processes. This book is aimed at teaching fundamental concepts and focuses on learning-by-doing through the use of examples with the software R. It is intended to provide an entry-level, easily accessible foundation for students and practitioners interested in spatial ecology and conservation.




Environmental Modeling


Book Description

The book has two aims: to introduce basic concepts of environmental modelling and to facilitate the application of the concepts using modern numerical tools such as MATLAB. It is targeted at all natural scientists dealing with the environment: process and chemical engineers, physicists, chemists, biologists, biochemists, hydrogeologists, geochemists and ecologists. MATLAB was chosen as the major computer tool for modeling, firstly because it is unique in it's capabilities, and secondly because it is available in most academic institutions, in all universities and in the research departments of many companies. In the 2nd edition many chapters will include updated and extended material. In addition the MATLAB command index will be updated and a new chapter on numerical methods will be added. For the second edition of 'Environmental Modeling' the first edition was completely revised. Text and figures were adapted to the recent MATLAB® version. Several chapters were extended. Correspondingly the index of MATLAB commands was extended considerably, which makes the book even more suitable to be used as a reference work by novices. Finally an introduction into numerical methods was added as a new chapter. “/p>




Hierarchical Modeling and Inference in Ecology


Book Description

A guide to data collection, modeling and inference strategies for biological survey data using Bayesian and classical statistical methods. This book describes a general and flexible framework for modeling and inference in ecological systems based on hierarchical models, with a strict focus on the use of probability models and parametric inference. Hierarchical models represent a paradigm shift in the application of statistics to ecological inference problems because they combine explicit models of ecological system structure or dynamics with models of how ecological systems are observed. The principles of hierarchical modeling are developed and applied to problems in population, metapopulation, community, and metacommunity systems. The book provides the first synthetic treatment of many recent methodological advances in ecological modeling and unifies disparate methods and procedures. The authors apply principles of hierarchical modeling to ecological problems, including * occurrence or occupancy models for estimating species distribution * abundance models based on many sampling protocols, including distance sampling * capture-recapture models with individual effects * spatial capture-recapture models based on camera trapping and related methods * population and metapopulation dynamic models * models of biodiversity, community structure and dynamics Wide variety of examples involving many taxa (birds, amphibians, mammals, insects, plants) Development of classical, likelihood-based procedures for inference, as well as Bayesian methods of analysis Detailed explanations describing the implementation of hierarchical models using freely available software such as R and WinBUGS Computing support in technical appendices in an online companion web site




Climate Change and Terrestrial Ecosystem Modeling


Book Description

Provides an essential introduction to modeling terrestrial ecosystems in Earth system models for graduate students and researchers.