Economic Feasibility of Ethanol Production from Sweet Sorghum Juice in Texas


Book Description

Environmental and political concerns centered on energy use from gasoline have led to a great deal of research on ethanol production. The goal of this thesis is to determine if it is profitable to produce ethanol in Texas using sweet sorghum juice. Four different areas, Moore, Hill, Willacy, and Wharton Counties, using two feedstock alternatives, sweet sorghum only and sweet sorghum and corn, will be analyzed using Monte Carlo simulation to determine the probability of economic success. Economic returns to the farmers in the form of a contract price for the average sweet sorghum yield per acre in each study area and to the ethanol plant buying sweet sorghum at the contract price will be simulated and ranked. The calculated sweet sorghum contract prices offered to farmers are $9.94, $11.44, $29.98, and $36.21 per ton in Wharton, Willacy, Moore, and Hill Counties, respectively. The contract prices are equal to the next most profitable crop returns or ten percent more than the total cost to produce sweet sorghum in the study area. The wide variation in the price is due to competing crop returns and the sweet sorghum growing season. Ethanol production using sweet sorghum and corn is the most profitable alternative analyzed for an ethanol plant. A Moore County ethanol plant has the highest average net present value of $492.39 million and is most preferred overall when using sweet sorghum and corn to produce ethanol. Sweet sorghum ethanol production is most profitable in Willacy County but is not economically successful with an average net present value of $-11.06 million. Ethanol production in Hill County is least preferred with an average net present value of $-712.00 and $48.40 million when using sweet sorghum only and sweet sorghum and corn, respectively. Producing unsubsidized ethanol from sweet sorghum juice alone is not profitable in Texas. Sweet sorghum ethanol supplemented by grain is more economical but would not be as profitable as producing ethanol from only grain in the Texas Panhandle. Farmers profit on average from contract prices for sweet sorghum when prices cover total production costs for the crop.




Socio-Economic Impacts of Bioenergy Production


Book Description

Around the world, many countries are increasing efforts to promote biomass production for industrial uses including biofuels and bio-products such as chemicals and bio-plastic. Against a backdrop of lively public debate on sustainability, bioenergy wields both positive and negative impacts upon a variety of environmental and socio-economic issues. These include property rights, labor conditions, social welfare, economic wealth, poverty reduction and more. This book discusses the issues and impacts of bioenergy, taking into account the local and regional framework under which bioenergy is produced, touching upon educational level, cultural aspects, the history and economies of the producing countries and an array of policies including environmental and social targets. The book surveys and analyzes global bioenergy production from a number of perspectives. The authors illustrate the complexity of interrelated topics in the bioenergy value chain, ranging from agriculture to conversion processes, as well as from social implications to environmental effects. It goes on to offer insight on future challenges associated with the expected boom of a global bio-based economy, which contributes to the paradigm shift from a fossil-based to a biomass and renewable energy-based economy. The expert contributors include researchers, investors, policy makers, representatives from NGOs and other stakeholders, from Europe, Africa, Asia and Latin America. Their contributions build upon the results of the Global-Bio-Pact project on “Global Assessment of Biomass and Bio-product Impacts on Socio-economics and Sustainability,” which was supported by the European Commission in its 7th Framework Program for Research and Technological Development, conducted from February 2010 to January 2013. The book benefits policy makers, scientists and NGO staffers working in the fields of agriculture, forestry, biotechnology and energy.




Breeding Sorghum for Diverse End Uses


Book Description

Breeding Sorghum for Diverse End Uses is a comprehensive overview of all significant global efforts for the genetic improvement of sorghum, a major crop of many semi-arid nations that is suitable for a huge range of uses, from human food, to biofuels. Split into two main sections, the book initially reviews the genetic suitability of sorghum for breeding, also providing the history of the genetic improvement of the grain. Finally, other sections look at specific breeding programs that could be improved in a number of areas, including human food, animal feed and industrial usage. Readers in academics, research, plant genetics and sorghum development will find this resource of great value. In addition, it is essential reading for engineers who utilize sorghum for food, feed and industrial materials in industry. - Provides information on key advances in the genetic makeup of sorghum - Allows plant breeders to apply this research to effectively breed new strains of sorghum that are dependent on final usage goals - Includes the latest findings in each section to orient researchers to plans for future genetic enhancement




Energy Crops


Book Description

It also gives an historical perspective and introduces the ethical issues.




Energy from the Biomass


Book Description

The success of the previous Conferences on Energy from Biomass, held in Brighton 1980and Berlin 1982, and the continued interest among European countries, encouraged theCommission of the European Communities to organise the third conference on this areaof energy production. It brought together about 500 experts from many countries thuspresenting an international forum for discussion of the most recent advances in researchand development, manufacture and industrial applications.




Fuel from Farms


Book Description

Decision to produce; Markets and uses; Market assessment; Prodution potential; Equipment selection; Financial requirements; Decision and planning workssheets; Basic ethanol production; Preparation of feedstocks, Fermentation; Distillation; Types of feedstocks; Coproduct yields; Agronomic considerations; Plant design; Overall plant considerations; Process control; Representative ethanol plant; Maintenance checklist; Business plan; Analysis of financial requirements; Organizational form; Financing; Case study; Summary of legislation; Bureau of alcohol, tabacco, and firearms permit information; Enviromental considerations.







Alcohol Fuels Bibliography


Book Description







Sugarcane Bioethanol


Book Description

In Brazil, sugarcane ethanol supplied, in 2009, 17.6 % of the energy for land transportation (excluding railroads)and about 55% of the total energy supplied by liquid fuel for Otto cycle engines. Besides the lower production costs ethanol produced from sugarcane in Brazil has another important advantage: in Central-South Brazil only 1 unit of fossil energy is used for each 8-9 units of energy produced by ethanol from sugarcane. Carbon emissions reduction also benefits from sugarcane ethanol: for each cubic meter of ethanol used as fuel, there is net saving of around 2 t CO2 not emitted to the atmosphere while, at the same time, no SO2 is emitted. Sugarcane was introduced in Brazil in 1532. The "Brazilian model" of producing concomitantly sugar and ethanol, brought important technical benefits and made possible an outstanding increase in the competitiveness in the international market for sugar and ethanol. Today about 50% of the sucrose of sugarcane produced in the country is directed to the production of sugar while another half is used to produce Ethanol. Industrial and academic R&D has helped to increase the productivity of ethanol steadily over the past 35 years, at a rate of 3.2% per year. Productivity gains implied savings of planted area by a factor of 2.6. In 2009/2010 the area planted with sugarcane for Ethanol production was 4.2 Mha, amounting to 1% of the total arable land available in Brazil. About 60% of the Ethanol produced in Brazil comes from the State of Sao Paulo, where the productivity is the highest (around 86 t/ha.year). Most of the recent expansion is happening in the center-west region of the country, in degraded pasture lands. The FAPESP Program for Research on Bioenergy, BIOEN, aims at articulating public and private R&D, using academic and industrial laboratories to advance and apply knowledge in fields related to ethanol production in Brazil. The BIOEN Program has a solid core for supporting academic exploratory research activities that will generate new knowledge and form scientists and professionals essential for advancing industry capacity in ethanol related technologies. On top of this, BIOEN includes partnerships with industry for cooperative R&D activities between industrial and academic laboratories, which are to be co-funded by FAPESP and industry.Federal agencies, such as CNPq, will also co-fund the research.