Economics for Mathematicians


Book Description

This is the expanded notes of a course intended to introduce students specializing in mathematics to some of the central ideas of traditional economics. The book should be readily accessible to anyone with some training in university mathematics; more advanced mathematical tools are explained in the appendices. Thus this text could be used for undergraduate mathematics courses or as supplementary reading for students of mathematical economics.




Mathematics for Economics


Book Description

This text offers a presentation of the mathematics required to tackle problems in economic analysis. After a review of the fundamentals of sets, numbers, and functions, it covers limits and continuity, the calculus of functions of one variable, linear algebra, multivariate calculus, and dynamics.




Mathematical Methods and Models for Economists


Book Description

A textbook for a first-year PhD course in mathematics for economists and a reference for graduate students in economics.




An Introduction to Mathematics for Economics


Book Description

A concise, accessible introduction to maths for economics with lots of practical applications to help students learn in context.




How Economics Became a Mathematical Science


Book Description

In How Economics Became a Mathematical Science E. Roy Weintraub traces the history of economics through the prism of the history of mathematics in the twentieth century. As mathematics has evolved, so has the image of mathematics, explains Weintraub, such as ideas about the standards for accepting proof, the meaning of rigor, and the nature of the mathematical enterprise itself. He also shows how economics itself has been shaped by economists’ changing images of mathematics. Whereas others have viewed economics as autonomous, Weintraub presents a different picture, one in which changes in mathematics—both within the body of knowledge that constitutes mathematics and in how it is thought of as a discipline and as a type of knowledge—have been intertwined with the evolution of economic thought. Weintraub begins his account with Cambridge University, the intellectual birthplace of modern economics, and examines specifically Alfred Marshall and the Mathematical Tripos examinations—tests in mathematics that were required of all who wished to study economics at Cambridge. He proceeds to interrogate the idea of a rigorous mathematical economics through the connections between particular mathematical economists and mathematicians in each of the decades of the first half of the twentieth century, and thus describes how the mathematical issues of formalism and axiomatization have shaped economics. Finally, How Economics Became a Mathematical Science reconstructs the career of the economist Sidney Weintraub, whose relationship to mathematics is viewed through his relationships with his mathematician brother, Hal, and his mathematician-economist son, the book’s author.




Mathematics for Economists with Applications


Book Description

Mathematics for Economists with Applications provides detailed coverage of the mathematical techniques essential for undergraduate and introductory graduate work in economics, business and finance. Beginning with linear algebra and matrix theory, the book develops the techniques of univariate and multivariate calculus used in economics, proceeding to discuss the theory of optimization in detail. Integration, differential and difference equations are considered in subsequent chapters. Uniquely, the book also features a discussion of statistics and probability, including a study of the key distributions and their role in hypothesis testing. Throughout the text, large numbers of new and insightful examples and an extensive use of graphs explain and motivate the material. Each chapter develops from an elementary level and builds to more advanced topics, providing logical progression for the student, and enabling instructors to prescribe material to the required level of the course. With coverage substantial in depth as well as breadth, and including a companion website at www.routledge.com/cw/bergin, containing exercises related to the worked examples from each chapter of the book, Mathematics for Economists with Applications contains everything needed to understand and apply the mathematical methods and practices fundamental to the study of economics.




Mathematical Methods of Game and Economic Theory


Book Description

Mathematical economics and game theory approached with the fundamental mathematical toolbox of nonlinear functional analysis are the central themes of this text. Both optimization and equilibrium theories are covered in full detail. The book's central application is the fundamental economic problem of allocating scarce resources among competing agents, which leads to considerations of the interrelated applications in game theory and the theory of optimization. Mathematicians, mathematical economists, and operations research specialists will find that it provides a solid foundation in nonlinear functional analysis. This text begins by developing linear and convex analysis in the context of optimization theory. The treatment includes results on the existence and stability of solutions to optimization problems as well as an introduction to duality theory. The second part explores a number of topics in game theory and mathematical economics, including two-person games, which provide the framework to study theorems of nonlinear analysis. The text concludes with an introduction to non-linear analysis and optimal control theory, including an array of fixed point and subjectivity theorems that offer powerful tools in proving existence theorems.




A First Course in Mathematical Economics


Book Description

The book studies a set of mathematical tools and techniques most necessary for undergraduate economics majors as they transition from largely non-technical first-year principles courses into calculus-based upper-level courses in economics. The book’s presentation style places more emphasis on the intuition underlying the mathematical concepts and results discussed and less on proofs and technical details. Its discussion topics have been chosen in terms of their immediate usefulness for beginners, while examples and applications are drawn from material that is familiar from introductory economics courses.




Mathematics for Economists Made Simple


Book Description

As the field of economics becomes ever more specialized and complicated, so does the mathematics required of economists. With Mathematics for Economists, expert mathematician Viatcheslav V. Vinogradov offers a straightforward, practical textbook for students in economics--for whom mathematics is not a scientific or philosophical subject but a practical necessity. Focusing on the most important fields of economics, the book teaches apprentice economists to apply mathematical algorithms and methods to economic analysis, while abundant exercises and problem sets allow them to test what they've learned.




Mathematical Economics


Book Description

This textbook provides a one-semester introduction to mathematical economics for first year graduate and senior undergraduate students. Intended to fill the gap between typical liberal arts curriculum and the rigorous mathematical modeling of graduate study in economics, this text provides a concise introduction to the mathematics needed for core microeconomics, macroeconomics, and econometrics courses. Chapters 1 through 5 builds students’ skills in formal proof, axiomatic treatment of linear algebra, and elementary vector differentiation. Chapters 6 and 7 present the basic tools needed for microeconomic analysis. Chapter 8 provides a quick introduction to (or review of) probability theory. Chapter 9 introduces dynamic modeling, applicable in advanced macroeconomics courses. The materials assume prerequisites in undergraduate calculus and linear algebra. Each chapter includes in-text exercises and a solutions manual, making this text ideal for self-study.