Econophysics and Financial Economics


Book Description

This book provides the first extensive analytic comparison between models and results from econophysics and financial economics in an accessible and common vocabulary. Unlike other publications dedicated to econophysics, it situates this field in the evolution of financial economics by laying the foundations for common theoretical framework and models.




Econophysics


Book Description

Filling the gap for an up-to-date textbook in this relatively new interdisciplinary research field, this volume provides readers with a thorough and comprehensive introduction. Based on extensive teaching experience, it includes numerous worked examples and highlights in special biographical boxes some of the most outstanding personalities and their contributions to both physics and economics. The whole is rounded off by several appendices containing important background material.




Econophysics


Book Description

The remarkable evolution of econophysics research has brought the deep synthesis of ideas derived from economics and physics to subjects as diverse as education, banking, finance, and the administration of large institutions. The original papers in this collection present a broad summary of these advances, written by interdisciplinary specialists. Included are studies on subjects in the development of econophysics; on the perspectives offered by econophysics on large problems in economics and finance, including the 2008-9 financial crisis; and on higher education and group decision making. The introductions and insights they provide will benefit everyone interested in applications of this new transdisciplinary science. Ten papers present an updated version of the origins, issues, and applications of econophysics Economics and finance chapters consider lessons learned from the 2008-9 financial crisis Sociophysics chapters propose new thinking on educational reforms and group decision making




The Statistical Mechanics of Financial Markets


Book Description

A careful examination of the interaction between physics and finance. It takes a look at the 100-year-long history of co-operation between the two fields and goes on to provide new research results on capital markets - taken from the field of statistical physics. The random walk model, well known in physics, is one good example of where the two disciplines meet. In the world of finance it is the basic model upon which the Black-Scholes theory of option pricing and hedging has been built. The underlying assumptions are discussed using empirical financial data and analogies to physical models such as fluid flows, turbulence, or superdiffusion. On this basis, new theories of derivative pricing and risk control can be formulated.




Introduction to Econophysics


Book Description

This book concerns the use of concepts from statistical physics in the description of financial systems. The authors illustrate the scaling concepts used in probability theory, critical phenomena, and fully developed turbulent fluids. These concepts are then applied to financial time series. The authors also present a stochastic model that displays several of the statistical properties observed in empirical data. Statistical physics concepts such as stochastic dynamics, short- and long-range correlations, self-similarity and scaling permit an understanding of the global behaviour of economic systems without first having to work out a detailed microscopic description of the system. Physicists will find the application of statistical physics concepts to economic systems interesting. Economists and workers in the financial world will find useful the presentation of empirical analysis methods and well-formulated theoretical tools that might help describe systems composed of a huge number of interacting subsystems.




Econophysics


Book Description




Scale Invariance and Beyond


Book Description

This book is an excellent introduction to the concept of scale invariance, which is a growing field of research with wide applications. It describes where and how symmetry under scale transformation (and its various forms of partial breakdown) can be used to analyze solutions of a problem without the need to explicitly solve it. The first part gives descriptions of tools and concepts; the second is devoted to recent attempts to go beyond the invariance or symmetry breaking, to discuss causes and consequences, and to extract useful information about the system. Examples are carefully worked out in fields as diverse as condensed matter physics, population dynamics, earthquake physics, turbulence, cosmology and finance.




Econophysics and Physical Economics


Book Description

This book summarises progress in the understanding of financial markets and economics based on the established methodology of statistical physics. It offers a new approach to the fundamentals of economics that offers the potential for increased insight and understanding. It should be of interest to all serious students of the subject.




Essentials of Econophysics Modelling


Book Description

This book is a course in methods and models rooted in physics and used in modelling economic and social phenomena. It covers the discipline of econophysics, which creates an interface between physics and economics. Besides the main theme, it touches on the theory of complex networks and simulations of social phenomena in general. After a brief historical introduction, the book starts with a list of basic empirical data and proceeds to thorough investigation of mathematical and computer models. Many of the models are based on hypotheses of the behaviour of simplified agents. These comprise strategic thinking, imitation, herding, and the gem of econophysics, the so-called minority game. At the same time, many other models view the economic processes as interactions of inanimate particles. Here, the methods of physics are especially useful. Examples of systems modelled in such a way include books of stock-market orders, and redistribution of wealth among individuals. Network effects are investigated in the interaction of economic agents. The book also describes how to model phenomena like cooperation and emergence of consensus. The book will be of benefit to graduate students and researchers in both Physics and Economics.




Statistics for Long-Memory Processes


Book Description

Statistical Methods for Long Term Memory Processes covers the diverse statistical methods and applications for data with long-range dependence. Presenting material that previously appeared only in journals, the author provides a concise and effective overview of probabilistic foundations, statistical methods, and applications. The material emphasizes basic principles and practical applications and provides an integrated perspective of both theory and practice. This book explores data sets from a wide range of disciplines, such as hydrology, climatology, telecommunications engineering, and high-precision physical measurement. The data sets are conveniently compiled in the index, and this allows readers to view statistical approaches in a practical context. Statistical Methods for Long Term Memory Processes also supplies S-PLUS programs for the major methods discussed. This feature allows the practitioner to apply long memory processes in daily data analysis. For newcomers to the area, the first three chapters provide the basic knowledge necessary for understanding the remainder of the material. To promote selective reading, the author presents the chapters independently. Combining essential methodologies with real-life applications, this outstanding volume is and indispensable reference for statisticians and scientists who analyze data with long-range dependence.