Ecuaciones Diferenciales Con Derive. Ejercicios Resueltos


Book Description

DERIVE es un software de cálculo científico destinado a estudiantes, profesores, investigadores o profesionales que tenga que realizar cualquier tipo de tarea relacionada con el cálculo. Es capaz de abordar complejos problemas de álgebra y análisis matemático y trabajar de forma rápida y eficaz con matrices y vectores. Además posee un entorno visual muy cómodo y sencillo que soporta todo tipo de gráficas y representaciones. Asimismo, permite procesar variables algebraicas, expresiones, ecuaciones, funciones, vectores, matrices, expresiones booleanas y la mayoría de los elementos del cálculo científico. Se trata de uno de los programas más utilizados en entornos relacionados con las matemáticas, la ingeniería y las ciencias experimentales en general.Este libro profundiza en el tratamiento del cálculo diferencial en una y varias variables a través de Derive. Su contenido es eminentemente práctico y todos los temas se ilustran con variedad de ejercicios en dificultad secuencial resueltos completamente con el programa DERIVE. Sin olvidar los conceptos teóricos, se ha puesto especial énfasis en la selección de los ejemplos prácticos con el fin de abarcar todo el campo científico que permite abordar el software DERIVE en el campo de las ecuaciones diferenciales. Se desarrollan temas tan interesantes como los que se indican a continuación: ECUACIONES DIFERENCIALES DE PRIMER ORDEN. ECUACIONES EXACTAS, EN VARIABLES SEPARADAS, HOMOGENEAS Y LINEALES. TIPOS ESPECIALESEcuaciones diferenciales de primer orden método general de resolución de ecuaciones diferenciales de primer ordenEcuaciones en variables separadas Ecuaciones diferenciales homogéneasEcuaciones diferenciales exactas Ecuaciones lineales de orden 1 Factores integrantes Ecuaciones de Bernoulli Ecuaciones generales homogéneas Ecuaciones tipo función de función linealEcuaciones tipo función de función racional lineal Ecuaciones de Almost Ecuaciones de ClairautECUACIONES DIFERENCIALES DE SEGUNDO ORDEN. TIPOS ESPECIALES Ecuaciones diferenciales de segundo orden Ecuaciones de la forma y'' + p(x) y' + q(x) y = r(x)Ecuaciones de la forma y'' = q(y) Ecuaciones de Liouville ECUACIONES DIFERENCIALES POR MÉTODOS APROXIMADOS Resolución de ecuaciones diferenciales por métodos aproximados Ecuaciones por series de Taylor Ecuaciones por el método de Picard Ecuaciones por el método de Euler Método de isóclinas. Campos direccionales SISTEMAS DE ECUACIONES DIFERENCIALES. ECUACIONES DIFERENCIALES DE ORDEN N Método de las series de Taylor Método de Picard Método de Runge Kutta ECUACIONES DIFERENCIALES ORDINARIAS DE ORDEN SUPERIOR. TIPOS ESPECIALES ECUACIONES ORDINARIAS DE ORDEN SUPERIOR.Ecuaciones homogéneas lineales de orden superior en coeficientes constantes Ecuaciones no homogéneas con coeficientes constantes. Variación de parámetros Ecuaciones no homogéneas con coeficientes variables. Ecuaciones de cauchy-euler Sistemas de ecuaciones lineales homogéneas con coeficientes constantesPolinomios ortogonales Polinomios de Chebychev de 1ª y 2ª especie Polinomios de Legendre Polinomios asociados de Legendre Polinomios de Hermite Polinomios de Weber Polinomios generalizados de Laguerre Polinomios de Jacobi Polinomios de Gegenbauer Funciones de Bessel y Airy ECUACIONES EN DIFERENCIAS FINITAS Ecuaciones en diferencias finitas de primer ordenEcuaciones en diferencias finitas geométricas Ecuaciones en diferencias finitas de Clairaut Ecuaciones en diferencias finitas de 2º orden lineales con coeficientes constantes




Differential Equations and Boundary Value Problems


Book Description

For introductory courses in Differential Equations. This text provides the conceptual development and geometric visualization of a modern differential equations course while maintaining the solid foundation of algebraic techniques that are still essential to science and engineering students. It reflects the new excitement in differential equations as the availability of technical computing environments likeMaple, Mathematica, and MATLAB reshape the role and applications of the discipline. New technology has motivated a shift in emphasis from traditional, manual methods to both qualitative and computer-based methods that render accessible a wider range of realistic applications. With this in mind, the text augments core skills with conceptual perspectives that students will need for the effective use of differential equations in their subsequent work and study.




Green’s Functions in the Theory of Ordinary Differential Equations


Book Description

This book provides a complete and exhaustive study of the Green’s functions. Professor Cabada first proves the basic properties of Green's functions and discusses the study of nonlinear boundary value problems. Classic methods of lower and upper solutions are explored, with a particular focus on monotone iterative techniques that flow from them. In addition, Cabada proves the existence of positive solutions by constructing operators defined in cones. The book will be of interest to graduate students and researchers interested in the theoretical underpinnings of boundary value problem solutions.




Mechanics of Materials


Book Description

This is a revised edition emphasising the fundamental concepts and applications of strength of materials while intending to develop students' analytical and problem-solving skills. 60% of the 1100 problems are new to this edition, providing plenty of material for self-study. New treatments are given to stresses in beams, plane stresses and energy methods. There is also a review chapter on centroids and moments of inertia in plane areas; explanations of analysis processes, including more motivation, within the worked examples.




Applied Partial Differential Equations


Book Description

This textbook is for the standard, one-semester, junior-senior course that often goes by the title "Elementary Partial Differential Equations" or "Boundary Value Problems;' The audience usually consists of stu dents in mathematics, engineering, and the physical sciences. The topics include derivations of some of the standard equations of mathemati cal physics (including the heat equation, the· wave equation, and the Laplace's equation) and methods for solving those equations on bounded and unbounded domains. Methods include eigenfunction expansions or separation of variables, and methods based on Fourier and Laplace transforms. Prerequisites include calculus and a post-calculus differential equations course. There are several excellent texts for this course, so one can legitimately ask why one would wish to write another. A survey of the content of the existing titles shows that their scope is broad and the analysis detailed; and they often exceed five hundred pages in length. These books gen erally have enough material for two, three, or even four semesters. Yet, many undergraduate courses are one-semester courses. The author has often felt that students become a little uncomfortable when an instructor jumps around in a long volume searching for the right topics, or only par tially covers some topics; but they are secure in completely mastering a short, well-defined introduction. This text was written to proVide a brief, one-semester introduction to partial differential equations.




Calculus, Volume 2


Book Description

Calculus, Volume 2, 2nd Edition An introduction to the calculus, with an excellent balance between theory and technique. Integration is treated before differentiation — this is a departure from most modern texts, but it is historically correct, and it is the best way to establish the true connection between the integral and the derivative. Proofs of all the important theorems are given, generally preceded by geometric or intuitive discussion. This Second Edition introduces the mean-value theorems and their applications earlier in the text, incorporates a treatment of linear algebra, and contains many new and easier exercises. As in the first edition, an interesting historical introduction precedes each important new concept.




Optimal Control Theory


Book Description

Optimal control methods are used to determine optimal ways to control a dynamic system. The theoretical work in this field serves as a foundation for the book, which the authors have applied to business management problems developed from their research and classroom instruction. Sethi and Thompson have provided management science and economics communities with a thoroughly revised edition of their classic text on Optimal Control Theory. The new edition has been completely refined with careful attention to the text and graphic material presentation. Chapters cover a range of topics including finance, production and inventory problems, marketing problems, machine maintenance and replacement, problems of optimal consumption of natural resources, and applications of control theory to economics. The book contains new results that were not available when the first edition was published, as well as an expansion of the material on stochastic optimal control theory.




Advanced Mechanics of Materials and Applied Elasticity


Book Description

This systematic exploration of real-world stress analysis has been completely updated to reflect state-of-the-art methods and applications now used in aeronautical, civil, and mechanical engineering, and engineering mechanics. Distinguished by its exceptional visual interpretations of solutions, Advanced Mechanics of Materials and Applied Elasticity offers in-depth coverage for both students and engineers. The authors carefully balance comprehensive treatments of solid mechanics, elasticity, and computer-oriented numerical methods—preparing readers for both advanced study and professional practice in design and analysis. This major revision contains many new, fully reworked, illustrative examples and an updated problem set—including many problems taken directly from modern practice. It offers extensive content improvements throughout, beginning with an all-new introductory chapter on the fundamentals of materials mechanics and elasticity. Readers will find new and updated coverage of plastic behavior, three-dimensional Mohr’s circles, energy and variational methods, materials, beams, failure criteria, fracture mechanics, compound cylinders, shrink fits, buckling of stepped columns, common shell types, and many other topics. The authors present significantly expanded and updated coverage of stress concentration factors and contact stress developments. Finally, they fully introduce computer-oriented approaches in a comprehensive new chapter on the finite element method.




Optimal Spacecraft Trajectories


Book Description

A textbook on the theory and applications of optimal spacecraft trajectories




Disjunctive Programming


Book Description

Disjunctive Programming is a technique and a discipline initiated by the author in the early 1970's, which has become a central tool for solving nonconvex optimization problems like pure or mixed integer programs, through convexification (cutting plane) procedures combined with enumeration. It has played a major role in the revolution in the state of the art of Integer Programming that took place roughly during the period 1990-2010. The main benefit that the reader may acquire from reading this book is a deeper understanding of the theoretical underpinnings and of the applications potential of disjunctive programming, which range from more efficient problem formulation to enhanced modeling capability and improved solution methods for integer and combinatorial optimization. Egon Balas is University Professor and Lord Professor of Operations Research at Carnegie Mellon University's Tepper School of Business.