Fibre Reinforced Concrete: Improvements and Innovations II


Book Description

This volume highlights the latest advances, innovations, and applications in the field of fibre-reinforced concrete (FRC), as presented by scientists and engineers at the RILEM-fib X International Symposium on Fibre Reinforced Concrete (BEFIB), held in Valencia, Spain, on September 20-22, 2021. It discusses a diverse range of topics concerning FRC: technological aspects, nanotechnologies related with FRC, mechanical properties, long-term properties, analytical and numerical models, structural design, codes and standards, quality control, case studies, Textile-Reinforced Concrete, Geopolymers and UHPFRC. After the symposium postponement in 2020, this new volume concludes the publication of the research works and knowledge of FRC in the frame of BEFIB from 2020 to 2021 with the successful celebration of the hybrid symposium BEFIB 2021. The contributions present traditional and new ideas that will open novel research directions and foster multidisciplinary collaboration between different specialists.




Punching of Structural Concrete Slabs


Book Description

Punching is considered to be one of the most difficult problems in structural concrete design and mechanical models or theoretical analyses were developed rather late in the history of concrete research attempts. This fib Bulletin reviews the development of design models and theoretical analyses since the CEB Bulletin 168 Punching Shear in Reinforced Concrete - State-of-the-Art Report published in 1985. The role of the concrete tensile strength was specially addressed. In this respect the present bulletin is also following-up the CEB Bulletin 237 Concrete Tension and Size Effects - Utilisation of concrete tension in structural concrete design and relevance of size effect - Contributions from CEB Task Group 2.7 published in 1997. Apart from new theoretical developments a comprehensive databank for comparisons with experimental evidence is included. About 400 punching tests were critically reviewed and evaluated in a consistent manner. This is thought to be the first step towards a generally agreed selection of reliable tests. The evident value of such a data bank is illustrated by comparisons carried out between the data and some of the analytical proposals as well as empirical code formulas. List of contents : (1) Introduction, (2) Code equations, (3) Mechanical models for punching, (4) New developments for mechanical models, (5) Numerical investigations, (7) Comparison of mechanical models and test results of slabs without shear reinforcement, (8) Comparison of code rules and tests of flat slabs without shear reinforcement, (9) Comparison of codes, models and tests of flat slabs with shear reinforcement, (10) Experimental investigations, (11) Summary and conclusions, References, Appendices : (I) Databank on slabs without shear reinforcement, (II) Databank on slabs with shear reinforcement, (III) Comparison of test data with code rules, (IV) Comparison of test data with selected models, (V) Notations.




fib Model Code for Concrete Structures 2010


Book Description

The International Federation for Structural Concrete (fib) is a pre-normative organization. 'Pre-normative' implies pioneering work in codification. This work has now been realized with the fib Model Code 2010. The objectives of the fib Model Code 2010 are to serve as a basis for future codes for concrete structures, and present new developments with regard to concrete structures, structural materials and new ideas in order to achieve optimum behaviour. The fib Model Code 2010 is now the most comprehensive code on concrete structures, including their complete life cycle: conceptual design, dimensioning, construction, conservation and dismantlement. It is expected to become an important document for both national and international code committees, practitioners and researchers. The fib Model Code 2010 was produced during the last ten years through an exceptional effort by Joost Walraven (Convener; Delft University of Technology, The Netherlands), Agnieszka Bigaj-van Vliet (Technical Secretary; TNO Built Environment and Geosciences, The Netherlands) as well as experts out of 44 countries from five continents.




Shear and Punching Shear in RC and FRC Elements


Book Description

fib Bulletin 57 is a collection of contributions from a workshop on "Recent developments on shear and punching shear in RC and FRC elements", held in Salò, Italy, in October 2010. Shear is one of a few areas of research into fundamentals of the behaviour of concrete structures where contention remains amongst researchers. There is a continuing debate between researchers from a structures perspective and those from a materials or fracture mechanics perspective about the mechanisms that enable the force flow through a concrete member and across cracks. In 2009, a Working Group was formed within fib Task Group 4.2 "Ultimate Limit State Models" to harmonise different ideas about design procedures for shear and punching. An important outcome of this work was the ensuing discussions between experts and practitioners regarding the shear and punching provisions of the draft fib Model Code, which led to the organization of the Salò workshop. Invited experts in the field of shear and FRC gave 18 lectures at the workshop that was attended by 72 participants from 12 countries in 3 different continents. The contributions from this conference as compiled in this bulletin are believed to represent the best of the current state of knowledge. They certainly are of general interest to fib members and especially helpful in the finalization of the 2010 fibModel Code. It is hoped that this publication will stimulate further research in the field, to refine and harmonize the available analytical models and tools for shear and punching design.




Non-Metallic (FRP) Reinforcement for Concrete Structures


Book Description

Dealing with a wide range of non-metallic materials, this book opens up possibilities of lighter, more durable structures. With contributions from leading international researchers and design engineers, it provides a complete overview of current knowledge on the subject.




Natural and Synthetic Fiber Reinforced Composites


Book Description

Natural and Synthetic Fiber Reinforced Composites Discover a comprehensive exploration of fiber reinforced polymers by an expert team of editors Fiber reinforced polymer (FRP) composites offer several unique properties that make them ideal for use in a wide range of industries, from automotive and aerospace to marine, construction, and co-industrial. In Natural and Synthetic Fiber Reinforced Composites: Synthesis, Properties and Applications, a distinguished team of mechanical engineers delivers a comprehensive overview of fiber reinforced composites. This edited volume includes thorough discussions of glass-, cotton-, and carbon-fiber reinforced materials, as well as the tribological properties and non-structural applications of synthetic fiber composites. Readers will also find practical explorations of the structural evolution, mechanical features, and future possibilities of fiber, textile, and nano-cementitious materials. The physical and chemical properties of cotton fiber-based composites are explored at length, as are the extraordinary mechanical, thermal, electrical, electronic, and field emission properties of carbon nanotubes. This singular book also includes: A thorough discussion of recent advancements in natural fiber reinforced polymer composites, their implications, and the opportunities that arise as a result A comprehensive exploration of the thermal behavior of natural fiber-based composites An insightful review of the literature on sisal fiber with polymer matrices A response to the growing research gap in the existing literature regarding natural fiber-based polymer composites and solutions to address it Perfect for scientists, engineers, professors, and students working in areas involving natural and synthetic reinforced polymers and composites, Natural and Synthetic Fiber Reinforced Composites: Synthesis, Properties and Applications offers a one-of-a-kind resource to help readers understand a critical and rapidly evolving technology.







High Tech Concrete: Where Technology and Engineering Meet


Book Description

This book contains the proceedings of the fib Symposium “High Tech Concrete: Where Technology and Engineering Meet”, that was held in Maastricht, The Netherlands, in June 2017. This annual symposium was organised by the Dutch Concrete Association and the Belgian Concrete Association. Topics addressed include: materials technology, modelling, testing and design, special loadings, safety, reliability and codes, existing concrete structures, durability and life time, sustainability, innovative building concepts, challenging projects and historic concrete, amongst others. The fib (International Federation for Structural Concrete) is a not-for-profit association committed to advancing the technical, economic, aesthetic and environmental performance of concrete structures worldwide.