Effect of Cetane Number and Volatility on Autoignition and Combustion of Alternative Fuels and Their Surrogates


Book Description

Diesel engine has become a popular choice for trucks, trains, boats, and most other heavy-duty applications. The inherent benefits of diesel engine are high thermal efficiency and specific power output, but there is a concern about high levels of engine-out NOx and particulate matter emissions, which is a major contributor in environment pollution. Moreover, concern about the crisis of crude oil reserves, increasing gas price, trade deficit, and homeland security enhances the interests in alternative fuels. Unlike conventional diesel fuel, alternative fuels have wide range of properties, such as volatility, cetane number, density, viscosity and lower heating value, which influence the behavior of fuel and formation of products. Therefore, it is necessary to understand the effect of these fuel properties on autoignition, combustion, performance, and emissions under compression ignition conditions to evaluate the operational capability of diesel engines fueled with alternative fuels. This dissertation covers a detailed investigation of the autoignition, combustion, and emission characteristics of alternative fuels and their surrogates in a constant volume vessel of Ignition Quality Tester (IQT), optically accessible rapid compression machine (RCM), and Partnership for Next Generation of Vehicle (PNGV) single cylinder diesel engine. Experimental data and simulation results indicate that the fuel properties, such as cetane number and volatility, influence the autoignition and combustion processes in diesel engine environment.




Automotive Fuels Reference Book


Book Description

The first two editions of this title, published by SAE International in 1990 and 1995, have been best-selling definitive references for those needing technical information about automotive fuels. This long-awaited new edition has been thoroughly revised and updated, yet retains the original fundamental fuels information that readers find so useful. This book is written for those with an interest in or a need to understand automotive fuels. Because automotive fuels can no longer be developed in isolation from the engines that will convert the fuel into the power necessary to drive our automobiles, knowledge of automotive fuels will also be essential to those working with automotive engines. Small quantities of fuel additives increasingly play an important role in bridging the gap that often exists between fuel that can easily be produced and fuel that is needed by the ever-more sophisticated automotive engine. This book pulls together in a single, extensively referenced volume, the three different but related topics of automotive fuels, fuel additives, and engines, and shows how all three areas work together. It includes a brief history of automotive fuels development, followed by chapters on automotive fuels manufacture from crude oil and other fossil sources. One chapter is dedicated to the manufacture of automotive fuels and fuel blending components from renewable sources. The safe handling, transport, and storage of fuels, from all sources, are covered. New combustion systems to achieve reduced emissions and increased efficiency are discussed, and the way in which the fuels’ physical and chemical characteristics affect these combustion processes and the emissions produced are included. There is also discussion on engine fuel system development and how these different systems affect the corresponding fuel requirements. Because the book is for a global market, fuel system technologies that only exist in the legacy fleet in some markets are included. The way in which fuel requirements are developed and specified is discussed. This covers test methods from simple laboratory bench tests, through engine testing, and long-term test procedures.




Automotive Fuels Reference Book


Book Description

The first two editions of this title, published by SAE International in 1990 and 1995, have been best-selling definitive references for those needing technical information about automotive fuels. This long-awaited new edition has been thoroughly revised and updated, yet retains the original fundamental fuels information that readers find so useful. This book is written for those with an interest in or a need to understand automotive fuels. Because automotive fuels can no longer be developed in isolation from the engines that will convert the fuel into the power necessary to drive our automobiles, knowledge of automotive fuels will also be essential to those working with automotive engines. Small quantities of fuel additives increasingly play an important role in bridging the gap that often exists between fuel that can easily be produced and fuel that is needed by the ever-more sophisticated automotive engine. This book pulls together in a single, extensively referenced volume, the three different but related topics of automotive fuels, fuel additives, and engines, and shows how all three areas work together. It includes a brief history of automotive fuels development, followed by chapters on automotive fuels manufacture from crude oil and other fossil sources. One chapter is dedicated to the manufacture of automotive fuels and fuel blending components from renewable sources. The safe handling, transport, and storage of fuels, from all sources, are covered. New combustion systems to achieve reduced emissions and increased efficiency are discussed, and the way in which the fuels’ physical and chemical characteristics affect these combustion processes and the emissions produced are included. There is also discussion on engine fuel system development and how these different systems affect the corresponding fuel requirements. Because the book is for a global market, fuel system technologies that only exist in the legacy fleet in some markets are included. The way in which fuel requirements are developed and specified is discussed. This covers test methods from simple laboratory bench tests, through engine testing, and long-term test procedures.







Alternative Diesel Fuels


Book Description

A key topic of many technical discussions has been the development of alternative fuels to power the compression ignition engine. Reasons for this include the desire to reduce the dependency on petroleum-based fuel and, at the same time, to reduce the particulate matter (PM) and NOx emissions. Also, there has been interest generated in the diesel engine because of the reduction in greenhouse gases that has been proposed during the 2008-2012 time frame in Europe and the regulations that affect diesel engines in the United States.




Diesel Fuels


Book Description

In this book, the authors present and discuss the characteristics, performance and environmental impacts of diesel fuels. Topics include the effects of diesel fuel composition and properties on engine performance and pollutant emissions; biodiesel production from alternative feedstocks in Brazil; development of dual fuel combustion models for direct injected heavy duty diesel engines; the molecular properties of some diesel fuel components and their biodegradation; the effect of oxygen additives on the performance and combustion of diesel engines; contrasting the life-cycle performance of conventional and alternative diesel fuels; and the impact of ethyl-tert-butyl ether (ETBE) addition to diesel oil.







Fuels of the Diesel-Gasoline Engines and Their Properties


Book Description

Hydrocarbon-based fuels which are gasoline, diesel, natural gas, and liquefied petroleum gas (LPG) have been generally used in the diesel and gasoline engines as a fuel. In this study, hydrocarbon-based fuels such as alkanes (paraffins), naphthenes (cycloparaffins), alkenes (olefins), alkynes (acetylenes), and aromatics (benzene derivatives) have been classified. Their molecular structure and properties have been comprehensively explained. In addition to this, some of the important fuel properties of the commonly used fossil-based fuels such as gasoline and diesel in the internal combustion engine have been evaluated. Thus, hydrocarbon derivative fuels which are diesel, gasoline, natural gas, and liquefied petroleum gas (LPG) have been investigated as an internal combustion engine fuel. Their physical and chemical properties were explained and compared to each other. Octane number and cetane number substantially affect the fuel ignition delay period and self-ignition temperature properties. Therefore, the gasoline and diesel engine running is dominantly affected by the octane and cetane numbers, respectively. As a result, fossil-based fuel,Äôs physical and chemical properties, advantages, and disadvantages have been comprehensively explained and compared to each other. The fuels, which are commonly used in the diesel and gasoline engine, have been investigated, and their important properties have been revealed.




Handbook of Fuels


Book Description

A guide to industrially relevant products and processes for transportation fuels The Handbook of Fuels offers a comprehensive review of the wide variety of fuels used to power vehicles, aircraft and ships and examines the processes to produce these fuels. The updated second edition reflects the growing importance of fuels and fuel additives from renewable sources. New chapters include information on current production technology and use of bioethanol, biomethanol and biomass-to-liquid fuels. The book also reviews novel additives and performanace enhancers for conventional engines and fuels for novel bybrid engines. This comprehensive resource contains critical information on the legal, safety, and environmental issues associated with the production and use of fuels as well as reviewing important secondary aspects of the use and production of fuels. This authoritative guide includes contributions from authors who are long-standing contributors to the Ullmann's Encyclopedia, the world's most trusted reference for industrial chemistry. This important guide: Contains an updated edition of the authoritative resource to the production and use of fuels used for transportation Includes information that has been selected to reflect only commercially relevant products and processes Presents contributions from a team of noted experts in the field Offers the most recent developments in fuels and additives from renewable sources Written for professionals in the fields of fossil and renewable fuels, engine design, and transportation, Handbook of Fuels is the comprehensive resource that has been revised to reflect the recent developments in fuels used for transportation.