Nuclear Lattice Effective Field Theory


Book Description

This primer begins with a brief introduction to the main ideas underlying Effective Field Theory (EFT) and describes how nuclear forces are obtained from first principles by introducing a Euclidean space-time lattice for chiral EFT. It subsequently develops the related technical aspects by addressing the two-nucleon problem on the lattice and clarifying how it fixes the numerical values of the low-energy constants of chiral EFT. In turn, the spherical wall method is introduced and used to show how improved lattice actions render higher-order corrections perturbative. The book also presents Monte Carlo algorithms used in actual calculations. In the last part of the book, the Euclidean time projection method is introduced and used to compute the ground-state properties of nuclei up to the mid-mass region. In this context, the construction of appropriate trial wave functions for the Euclidean time projection is discussed, as well as methods for determining the energies of the low-lying excitations and their spatial structure. In addition, the so-called adiabatic Hamiltonian, which allows nuclear reactions to be precisely calculated, is introduced using the example of alpha-alpha scattering. In closing, the book demonstrates how Nuclear Lattice EFT can be extended to studies of unphysical values of the fundamental parameters, using the triple-alpha process as a concrete example with implications for the anthropic view of the Universe. Nuclear Lattice Effective Field Theory offers a concise, self-contained, and introductory text suitable for self-study use by graduate students and newcomers to the field of modern computational techniques for atomic nuclei and nuclear reactions.




Introduction to Effective Field Theory


Book Description

This advanced, accessible textbook on effective field theories uses worked examples to bring this important topic to a wider audience.




Renormalization Group and Effective Field Theory Approaches to Many-Body Systems


Book Description

There have been many recent and important developments based on effective field theory and the renormalization group in atomic, condensed matter, nuclear and high-energy physics. These powerful and versatile methods provide novel approaches to study complex and strongly interacting many-body systems in a controlled manner. The six extensive lectures gathered in this volume combine selected introductory and interdisciplinary presentations focused on recent applications of effective field theory and the renormalization group to many-body problems in such diverse fields as BEC, DFT, extreme matter, Fermi-liquid theory and gauge theories. Primarily aimed at graduate students and junior researchers, they offer an opportunity to explore fundamental physics across subfield boundaries at an early stage in their careers.




Effective Field Theories For Nuclei And Compact-star Matter: Chiral Nuclear Dynamics (Cnd-iii)


Book Description

Effective field theories have been widely used in nuclear physics. This volume is devoted to exploring the intricate structure of compact-star matter inaccessible directly from QCD. It is principally anchored on hidden symmetries and topology presumed to be encoded in QCD. It differs from standard effective field theory and energy density functional approaches in that it exploits renormalization-group flow in the complex 'vacuum' sliding with density inferred from topology change identified as a manifestation of baryon-quark continuity in dense matter. It makes a variety of predictions that drastically differ from the conventional treatments that could be tested by upcoming terrestrial and astrophysical experiments.This monograph recounts how to go, in one unique field theoretic formalism in terms of hadronic degrees of freedom, from finite nuclei to dense compact-star matter that could be explored in RIB-type machines in nuclear physics as well as in LIGO-type gravity waves in astrophysics.




An Advanced Course in Computational Nuclear Physics


Book Description

This graduate-level text collects and synthesizes a series of ten lectures on the nuclear quantum many-body problem. Starting from our current understanding of the underlying forces, it presents recent advances within the field of lattice quantum chromodynamics before going on to discuss effective field theories, central many-body methods like Monte Carlo methods, coupled cluster theories, the similarity renormalization group approach, Green’s function methods and large-scale diagonalization approaches. Algorithmic and computational advances show particular promise for breakthroughs in predictive power, including proper error estimates, a better understanding of the underlying effective degrees of freedom and of the respective forces at play. Enabled by recent improvements in theoretical, experimental and numerical techniques, the state-of-the art applications considered in this volume span the entire range, from our smallest components – quarks and gluons as the mediators of the strong force – to the computation of the equation of state for neutron star matter. The lectures presented provide an in-depth exposition of the underlying theoretical and algorithmic approaches as well details of the numerical implementation of the methods discussed. Several also include links to numerical software and benchmark calculations, which readers can use to develop their own programs for tackling challenging nuclear many-body problems.




Nuclear Physics With Effective Field Theory Ii


Book Description

The method of effective field theory (EFT) is ideally suited to deal with physical systems containing separate energy scales. Applied to low energy hadronic phenomena it provides a framework for systematically describing nuclear systems in a way consistent with quantum chromodynamics, the underlying theory of strong interactions. Because EFT offers the possibility of a unified description of all low energy processes involving nucleons, it has the potential to become the foundation of conventional nuclear physics.Much progress has been made recently in this field: a number of observables in the two-nucleon sector were computed and compared to experiment, issues related to the extension of the EFT program to the three-nucleon sector were clarified, and the convergence of the low energy expansion was critically examined. This book contains the proceedings of the Workshop on 'Nuclear Physics with Effective Field Theory II', where these and other developments were discussed.




Condensed Matter Field Theory


Book Description

This primer is aimed at elevating graduate students of condensed matter theory to a level where they can engage in independent research. Topics covered include second quantisation, path and functional field integration, mean-field theory and collective phenomena.




Nuclear Physics


Book Description

Dramatic progress has been made in all branches of physics since the National Research Council's 1986 decadal survey of the field. The Physics in a New Era series explores these advances and looks ahead to future goals. The series includes assessments of the major subfields and reports on several smaller subfields, and preparation has begun on an overview volume on the unity of physics, its relationships to other fields, and its contributions to national needs. Nuclear Physics is the latest volume of the series. The book describes current activity in understanding nuclear structure and symmetries, the behavior of matter at extreme densities, the role of nuclear physics in astrophysics and cosmology, and the instrumentation and facilities used by the field. It makes recommendations on the resources needed for experimental and theoretical advances in the coming decade.




Perspectives on Lhc Physics


Book Description

The Large Hadron Collider (LHC), located at CERN, Geneva, Switzerland, is the world's largest and highest energy and highest intensity particle accelerator. Here is a timely book with several perspectives on the hoped-for discoveries from the LHC.This book provides an overview on the techniques that will be crucial for finding new physics at the LHC, as well as perspectives on the importance and implications of the discoveries. Among the accomplished contributors to this book are leaders and visionaries in the field of particle physics beyond the Standard Model, including two Nobel Laureates (Steven Weinberg and Frank Wilczek), and presumably some future Nobel Laureates, plus top younger theorists and experimenters. With its blend of popular and technical contents, the book will have wide appeal, not only to physical scientists but also to those in related fields.




Thermal Field Theory


Book Description

Introduction to the relativistic thermal field theory and its applications in particle physics and astrophysics.