Effectiveness of Surveillance Sampling Strategies for Detecting Steam Generator Tube Degradation


Book Description

Nuclear power plants seeking to extend their operating license must first address the degradation of systems, structures, and components (SSCs) to ensure they can maintain a satisfactory level of reliability into the extended lifetime. Passive SSCs play an important role in determining the feasibility of life extension. Part of the feasibility analysis requires plants to demonstrate the viability and reliability of passive SSCs into the extended lifetime. The research carried out toward this thesis considers primary water stress corrosion cracking (PWSCC) of steam generator (SG) tubes as an example degradation mechanism. An empirical model for PWSCC crack growth is adopted to simulate crack growth over a 40-year operating lifetime. Surveillance and maintenance strategies similar to those performed by the industry are integrated with the PWSCC crack growth model to determine the effectiveness of surveillance strategies for detecting SG tube degradation. The results of this analysis were applied to a specific accident scenario in which steam generator tubes rupture following a depressurization of the secondary side due to the sudden rupture of a steam-line caused by flow-accelerated corrosion. Likelihood of a spontaneous steam generator tube rupture is also assessed. The analysis and application of the specific accident scenario indicates a maximum core damage frequency in the 16th year. Sensitivity analyses into the probability of detection (POD) and crack growth rates were also performed. As expected, the likelihood of the accident scenario occurring increased significantly as the maximum POD was decreased. When crack growth rates were slowed down, the overall likelihood of the accident scenario decreased and the expected occurrence of the accident scenario was delayed.




Evaluation of Sampling Plans for In-service Inspection of Steam Generator Tubes. Volume 2, Comprehensive Analytical and Monte Carlo Simulation Results for Several Sampling Plans


Book Description

This report summarizes the results of three previous studies to evaluate and compare the effectiveness of sampling plans for steam generator tube inspections. An analytical evaluation and Monte Carlo simulation techniques were the methods used to evaluate sampling plan performance. To test the performance of candidate sampling plans under a variety of conditions, ranges of inspection system reliability were considered along with different distributions of tube degradation. Results from the eddy current reliability studies performed with the retired-from-service Surry 2A steam generator were utilized to guide the selection of appropriate probability of detection and flaw sizing models for use in the analysis. Different distributions of tube degradation were selected to span the range of conditions that might exist in operating steam generators. The principal means of evaluating sampling performance was to determine the effectiveness of the sampling plan for detecting and plugging defective tubes. A summary of key results from the eddy current reliability studies is presented. The analytical and Monte Carlo simulation analyses are discussed along with a synopsis of key results and conclusions.







Regulatory Guide


Book Description

Contents: 1. Power reactors.--2. Research and test reactors.--3. Fuels and materials facilities.--4. Environmental and siting.--5. Materials and plant protection.--6. Products.--7. Transportation.--8. Occupational health.--9. Antitrust reviews.--10. General.




Annual Report


Book Description










Steam Generators for Nuclear Power Plants


Book Description

Steam Generators for Nuclear Power Plants examines all phases of the lifecycle of nuclear steam generators (NSGs), components which are essential for the efficient and safe operation of light water reactors (LWRs). Coverage spans the design, manufacturing, operation and maintenance, fitness-for-service, and long-term operation of these key reactor parts. Part One opens with a chapter that provides fundamental background on NSG engineering and operational experiences. Following chapters review the different NSG concepts, describe NSG design and manufacturing, and consider the particularities of SGs for VVER reactors. Part Two focuses on NSG operation and maintenance, starting with an overview of the activities required to support reliable and safe operation. The discussion then moves on to tubing vibration, followed by the water and steam cycle chemistry issues relevant to the NSG lifecycle. Finally, a number of chapters focus on the key issue of corrosion in NSGs from different angles. This book serves as a timely resource for professionals involved in all phases of the NSG lifecycle, from design, manufacturing, operation and maintenance, to fitness-for-service and long-term operation. It is also intended as a valuable resource for students and researchers interested in a range of topics relating to NSG lifecycle management. - Fulfills the need for a detailed reference on steam generators for nuclear power plants - Contains comprehensive coverage of all phases of the nuclear steam generator lifecycle, from design, manufacturing, operation and maintenance, to fitness-for-service and long-term operation in one convenient volume - Presents contributions from key manufacturers and research institutes and universities







Federal Register


Book Description