Health Effects of Beryllium Exposure


Book Description

Beryllium is an important metal that is used in a number of industries-including the defense, aerospace, automotive, medical, and electronics industries-because of its exceptional strength, stability, and heat-absorbing capability. It is found in a variety of technologies, including nuclear devices, satellite systems, missile systems, radar systems, bushings and bearings in aircraft and heavy machinery, x-ray machines used for mammography, cellular telephone components, computer components, and connectors for fiber optics. To help determine the steps necessary to protect its workforce from the adverse effects of exposure to beryllium used in military aerospace applications, the U.S. Air Force requested that the National Research Council's Committee on Toxicology (COT) conduct an independent evaluation of the scientific literature on beryllium, provide risk estimates for cancer and noncancer health end points, and make recommendations about specific tests for surveillance and biomonitoring of workers. The request specified that two reports be produced to accomplish those tasks. The first is to provide a review of the scientific literature on beryllium, and the second will expand more critically on the review in considering the maximum chronic inhalation exposure levels that are unlikely to produce adverse health effects, in estimating carcinogenic risks, and in providing guidance on testing methods for surveillance and monitoring of worker populations and other specific issues detailed in the statement of task. In response to the U.S. Air Force request, COT convened the Committee on Beryllium Alloy Exposures, which prepared this first report. Health Effects of Beryllium Exposure : A Literature Review identifies the available toxicologic, epidemiologic, and other literature on beryllium that is most relevant for addressing the statement of task, focusing primarily on beryllium sensitization, CBD, and cancer.







Toxicology of the Lung


Book Description

The most up-to-date treatment of inhalation toxicology available, Toxicology of the Lung, Fourth Edition examines the subject from a target-organ perspective. Completely revised and updated, the book includes contributions from an entirely new set of authors, each of them a leading international authority in their respective specialties. As with th




Bacterial Exotoxins: How Bacteria Fight the Immune System


Book Description

Bacterial pathogenicity factors are functionally diverse. They may facilitate the adhesion and colonization of bacteria, influence the host immune response, assist spreading of the bacterium by e.g. evading recognition by immune cells, or allow bacteria to dwell within protected niches inside the eukaryotic cell. Exotoxins can be single polypeptides or heteromeric protein complexes that act on different parts of the cells. At the cell surface, they may insert into the membrane to cause damage; bind to receptors to initiate their uptake; or facilitate the interaction with other cell types. For example, bacterial superantigens specifically bind to major histocompatibility complex (MHC) II molecules on the surface of antigen presenting cells and the T cell receptor, while cytolysins cause pore formation. For intracellular activity, exotoxins need to be translocated across the eukaryotic membrane. Gram-negative bacteria can directly inject effector proteins in a receptor-independent manner by use of specialized needle apparatus such as bacterial type II, III, or type IV secretion systems. Other methods of translocation include the phagocytic uptake of bacteria followed by toxin secretion, or receptor-mediated endocytosis which allows the targeting of distinct cell types. Receptor-based uptake is initiated by the binding of heteromeric toxin complexes to the cell surface and completed by the translocation of the effector protein(s) across the endosomal membrane. In the cytosol, toxins interact with specific eukaryotic target proteins to cause post-translational modifications that often result in the manipulation of cellular signalling cascades and inflammatory responses. It has become evident that the actions of some bacterial toxins may exceed their originally assumed cytotoxic function. For example, pore-forming toxins do not only cause cytolysis, but may also induce autophagy, pyroptosis, or activation of the MAPK pathways, resulting in adjustment of the host immune response to infection and modification of inflammatory responses both locally and systemically. Other recently elucidated examples of the immunomodulatory function of cell death-inducing exotoxins include TcdB of Clostridium difficile which activates the inflammasome through modification of cellular Rho GTPases, or the Staphyloccocus d-toxin which activates mast cells. The goal of this research topic was to gather current knowledge on the interaction of bacterial exotoxins and effector proteins with the host immune system. The following 16 research and review articles in this special issue describe mechanisms of immune modification and evasion and provide an overview over the complexity of bacterial toxin interaction with different cells of the immune system.




Biomaterial-Related Infections


Book Description

The use of medical devices (e.g., catheters, implants, and probes) is a common and essential part of medical care for both diagnostic and therapeutic purposes. However, these devices quite frequently lead to the incidence of infections due to the colonization of their abiotic surfaces by biofilm-growing microorganisms, which are progressively resistant to antimicrobial therapies. Several methods based on anti-infective biomaterials that repel microbes have been developed to combat device-related infections. Among these strategies, surface coating with antibiotics (e.g., beta-lactams), natural compounds (e.g., polyphenols), or inorganic elements (e.g., silver and copper nanoparticles) has been widely recognized as exhibiting broad-spectrum bactericidal or bacteriostatic activity. So, in order to achieve a better therapeutic response, it is crucial to understand how these infections are different from others. This will allow us to find new biomaterials characterized by antifouling coatings with repellent properties or low adhesion towards microorganisms, or antimicrobial coatings that are capable of killing microbes approaching the surface, improving biomaterial functionalization strategies and supporting tissues’ bio-integration.




Master's Theses Directories


Book Description

"Education, arts and social sciences, natural and technical sciences in the United States and Canada".




Asbestiform Fibers


Book Description

Much of the more than 30 million tons of asbestos used in the United States since 1900 is still present as insulation in offices and schools, as vinyl-asbestos flooring in homes, and in other common products. This volume presents a comprehensive evaluation of the relation of these fibers to specific diseases and the extent of nonoccupational risks associated with them. It covers sources of asbestiform fibers, properties of the fibers, and carcinogenic and fibrogenic risks they pose.




Glucocorticoid Signaling


Book Description

This timely volume provides a comprehensive overview of glucocorticoids and their role in regulating many aspects of physiology and their use in the treatment of disease. The book is broken into four sections that begin by giving a general introduction to glucocorticoids and a brief history of the field. The second section will discuss the effects of glucocorticoids on metabolism, while the third section will cover the effects of glucocorticoids on key tissues. The final section will discuss general topics, such as animal models in glucocorticoid research and clinical implications of glucocorticoid research. Featuring chapters from leaders in the field, this volume will be of interest to both researchers and clinicians.




Cytokine-Ion Channel Interactions in Pulmonary Inflammation


Book Description

This Research Topic assembles original contributions and reviews from an international consortium of PIs related to interactions between pro-inflammatory cytokines and ion channels during acute lung injury and chronic heart failure.




Environmental Epigenetics


Book Description

This book examines the toxicological and health implications of environmental epigenetics and provides knowledge through an interdisciplinary approach. Included in this volume are chapters outlining various environmental risk factors such as phthalates and dietary components, life states such as pregnancy and ageing, hormonal and metabolic considerations and specific disease risks such as cancer cardiovascular diseases and other non-communicable diseases. Environmental Epigenetics imparts integrative knowledge of the science of epigenetics and the issues raised in environmental epidemiology. This book is intended to serve both as a reference compendium on environmental epigenetics for scientists in academia, industry and laboratories and as a textbook for graduate level environmental health courses. Environmental Epigenetics imparts integrative knowledge of the science of epigenetics and the issues raised in environmental epidemiology. This book is intended to serve both as a reference compendium on environmental epigenetics for scientists in academia, industry and laboratories and as a textbook for graduate level environmental health courses.