High-Pressure Chemistry and Physics of Polymers


Book Description

High-Pressure Chemistry and Physics of Polymers is devoted to covering all areas of high-pressure polymer materials science. Topics addressed include the synthesis of polymers, changes in reactivity, structural transformations, molecular dynamics, relaxation processes, deformational properties, chemical modification, and the effect of shock waves and shear stresses. The authors' contributions reflect over 60 years of Soviet study in the field of physico-chemistry conducted at the major former Soviet Institutes of Chemical Physics, Organic Chemistry, Polymer Chemistry, and Physical Chemistry. Fundamental topics such as compressibility of polymers, polymerization under pressure, viscoelastic/deformational properties, and polymer modification are discussed with an eye toward materials development for improving physical models and methods of calculating the changing parameters of materials under pressure. The book is a valuable reference to data on mechanisms of physical and chemical processes, in addition to new experimental data for improving physical models and methods of calculating changes in material characteristics under compression loads. High-Pressure Chemistry and Physics of Polymers will be an important reference for graduate students and practicing professionals in polymer chemistry and polymeric materials.




Encyclopedia of Continuum Mechanics


Book Description

This Encyclopedia covers the entire science of continuum mechanics including the mechanics of materials and fluids. The encyclopedia comprises mathematical definitions for continuum mechanical modeling, fundamental physical concepts, mechanical modeling methodology, numerical approaches and many fundamental applications. The modelling and analytical techniques are powerful tools in mechanical civil and areospsace engineering, plus in related fields of plasticity, viscoelasticity and rheology. Tensor-based and reference-frame-independent, continuum mechanics has recently found applications in geophysics and materials.













High Pressure Technology


Book Description




High-pressure Gases in Amorphous Polymers


Book Description

In this work, a parameterization strategy that allows the calculation of polymer molecular parameters from macroscopic properties of binary polymer solutions is presented. The proposed parameterization is demonstrated by reference to the PC-SAFT equation of state, but can be applied to any molecular-based model. The parameterization scheme has been developed in terms of the polymer-solvent interaction parameter and the Hildebrand parameter, which describe the molecular nature and extent of the polymersolvent interactions. The specification of these macroscopic properties yields a set of polymer parameters that are suitable for the description of thermodynamic properties and phase behavior of polymer solutions. In this way neither extensive experimental data nor complex minimization techniques are necessary, as is required for the current approaches for the estimation of pure-polymer parameters for SAFT-type equations. Using polymer parameters calculated from the proposed parameterization strategy, the PC-SAFT model could satisfactorily predict the phase equilibria, gas solubility and polymer swelling behavior of binary and ternary polymer solutions with different solvents, including nonassociating compounds such as n-alkanes, polar compounds such as ethers, esters and ketones, and associating compounds such as alcohols. A computational approach for building atomistic models for amorphous polymer networks in order to simulate their pore structure and gas adsorption properties is also presented. The computational approach replicates the basic reactivity rules of the selfcondensation reaction of dichloroxylene (DCX) via Friedel-Crafts chemistry and allows the formation of amorphous polymer networks, which are not possible to generate by structural X-ray crystallography/diffraction as is usually done for crystalline materials. The method is discussed for poly(dichloroxylene) networks, but can be extended to other polymer networks. Atomistic models were further refined by fitting to characterization data (i.e., bulk density, absolute density, micropore volume and elemental composition). These models were characterized by specific surface area and pore size distribution. A sensitivity analysis was performed to determine the minimum box size that should be used in adsorption simulations. Simulated adsorption isotherms and isosteric heats for methane and hydrogen were found to be in reasonable agreement with the experimental data.




Amorphous Solid Dispersions


Book Description

This volume offers a comprehensive guide on the theory and practice of amorphous solid dispersions (ASD) for handling challenges associated with poorly soluble drugs. In twenty-three inclusive chapters, the book examines thermodynamics and kinetics of the amorphous state and amorphous solid dispersions, ASD technologies, excipients for stabilizing amorphous solid dispersions such as polymers, and ASD manufacturing technologies, including spray drying, hot melt extrusion, fluid bed layering and solvent-controlled micro-precipitation technology (MBP). Each technology is illustrated by specific case studies. In addition, dedicated sections cover analytical tools and technologies for characterization of amorphous solid dispersions, the prediction of long-term stability, and the development of suitable dissolution methods and regulatory aspects. The book also highlights future technologies on the horizon, such as supercritical fluid processing, mesoporous silica, KinetiSol®, and the use of non-salt-forming organic acids and amino acids for the stabilization of amorphous systems. Amorphous Solid Dispersions: Theory and Practice is a valuable reference to pharmaceutical scientists interested in developing bioavailable and therapeutically effective formulations of poorly soluble molecules in order to advance these technologies and develop better medicines for the future.