Auditory Efferent System: New Insights from Cortex to Cochlea


Book Description

The main function of the sensory systems is the transducing of external stimuli into bioelectrical signals, which are conducted through afferent pathways from sensory epithelia to the brain. However, it is known that descending projections are ubiquitous in the different sensory modalities, and in the case of auditory efferents connect the cerebral cortex with sensory receptor cells. Several functions have been attributed to the efferent system, including protection to acoustic trauma, unmasking of auditory stimuli in background noise, balance of interaural sensitivity and some cognitive functions like modulation of cochlear sensitivity during selective attention to auditory or visual stimuli. In addition there is evidence of a possible involvement of the efferent system in the etiology or treatment of some clinical pathologies like tinnitus. In this e-book, entitled “Auditory Efferent System: New Insights from Cortex to Cochlea”, we aimed to give an overview of the advances concerning the descending projections from the auditory cortex to subcortical nuclei and the olivocochlear system. In addition, different theoretical proposals of efferent functions are presented. We think that this e-book is an important contribution to the understanding of the efferent system in mammals, merging auditory-cortex literature with studies performed in the olivocochlear system.




The Efferent Auditory System


Book Description

Six studies explore how signals going from the brain to parts of the auditory system helps the system perform a number of functions, including adapting to background noise and allowing transients and other brief stimuli to be properly coded. Studies include discussions of the olivocochlear system and protection from acoustic injury, ontogenetic and evolutionary evidence for the motoneuron nature of vestibular and cochlear efferents, de-recruitment by multiband compression in hearing aids, and clinical applications. The CD contains a brief video of hair cell control and damping.




Efferent Auditory System


Book Description

Text on the structure, function, and clinical correlates of the medial and lateral efferent olivocochlear system. Provides a review of the anatomy, physiology, and neuropharmacology of the medial efferent system. For audiologists and otolaryngologists.




Auditory and Vestibular Efferents


Book Description

Efferent sensory systems have emerged as major components of processing by the central nervous system. Whereas the afferent sensory systems bring environmental information into the brain, efferent systems function to monitor, sharpen, and attend selectively to certain stimuli while ignoring others. This ability of the brain to implement these functions enables the organism to make fine discriminations and to respond appropriately to environmental conditions so that survival is enhanced. Our focus will be on auditory and vestibular efferents, topics linked together by the inner ear connection. The biological utility of the efferent system is striking. How it functions is less well understood, and with each new discovery, more questions arise. The book that is proposed here reflects our vision to share what is known on the topic by authors who actually have made the observations.




The Cochlea


Book Description

Knowledge about the structure and function of the inner ear is vital to an understanding of vertebrate hearing. This volume presents a detailed overview of the mammalian cochlea from its anatomy and physiology to its biophysics and biochemistry. The nine review chapters, written by internationally distinguished auditory researchers, provide a detailed and unified introduction to sound processing in the cochlea and the steps by which the ensuing signals are prepared for the central nervous system.




Auditory Efferent System: New Insights from Cortex to Cochlea


Book Description

The main function of the sensory systems is the transducing of external stimuli into bioelectrical signals, which are conducted through afferent pathways from sensory epithelia to the brain. However, it is known that descending projections are ubiquitous in the different sensory modalities, and in the case of auditory efferents connect the cerebral cortex with sensory receptor cells. Several functions have been attributed to the efferent system, including protection to acoustic trauma, unmasking of auditory stimuli in background noise, balance of interaural sensitivity and some cognitive functions like modulation of cochlear sensitivity during selective attention to auditory or visual stimuli. In addition there is evidence of a possible involvement of the efferent system in the etiology or treatment of some clinical pathologies like tinnitus. In this e-book, entitled "Auditory Efferent System: New Insights from Cortex to Cochlea", we aimed to give an overview of the advances concerning the descending projections from the auditory cortex to subcortical nuclei and the olivocochlear system. In addition, different theoretical proposals of efferent functions are presented. We think that this e-book is an important contribution to the understanding of the efferent system in mammals, merging auditory-cortex literature with studies performed in the olivocochlear system.




Human Auditory Development


Book Description

This book overviews auditory development in nonhuman species and proposes a common time frame for human and nonhuman auditory development. It attempts to explain the mechanisms accounting for age-related change in several domains of auditory processing.




The Auditory System and Human Sound-Localization Behavior


Book Description

The Auditory System and Human Sound-Localization Behavior provides a comprehensive account of the full action-perception cycle underlying spatial hearing. It highlights the interesting properties of the auditory system, such as its organization in azimuth and elevation coordinates. Readers will appreciate that sound localization is inherently a neuro-computational process (it needs to process on implicit and independent acoustic cues). The localization problem of which sound location gave rise to a particular sensory acoustic input cannot be uniquely solved, and therefore requires some clever strategies to cope with everyday situations. The reader is guided through the full interdisciplinary repertoire of the natural sciences: not only neurobiology, but also physics and mathematics, and current theories on sensorimotor integration (e.g. Bayesian approaches to deal with uncertain information) and neural encoding. Quantitative, model-driven approaches to the full action-perception cycle of sound-localization behavior and eye-head gaze control Comprehensive introduction to acoustics, systems analysis, computational models, and neurophysiology of the auditory system Full account of gaze-control paradigms that probe the acoustic action-perception cycle, including multisensory integration, auditory plasticity, and hearing impaired




Development of Auditory and Vestibular Systems


Book Description

Development of Auditory and Vestibular Systems fourth edition presents a global and synthetic view of the main aspects of the development of the stato-acoustic system. Unique to this volume is the joint discussion of two sensory systems that, although close at the embryological stage, present divergences during development and later reveal conspicuous functional differences at the adult stage. This work covers the development of auditory receptors up to the central auditory system from several animal models, including humans. Coverage of the vestibular system, spanning amphibians to effects of altered gravity during development in different species, offers examples of the diversity and complexity of life at all levels, from genes through anatomical form and function to, ultimately, behavior. The new edition of Development of Auditory and Vestibular Systems will continue to be an indispensable resource for beginning scientists in this area and experienced researchers alike. Full-color figures illustrate the development of the stato-acoustic system pathway Covers a broad range of species, from drosophila to humans, demonstrating the diversity of morphological development despite similarities in molecular processes involved at the cellular level Discusses a variety of approaches, from genetic-molecular biology to psychophysics, enabling the investigation of ontogenesis and functional development




The Mammalian Auditory Pathway: Neuroanatomy


Book Description

The Springer Handbook of Auditory Research presents a series of com prehensive and synthetic reviews of the fundamental topics in modem auditory research. It is aimed at all individuals with interests in hearing research including advanced graduate students, postdoctoral researchers, and clinical investigators. The volumes will introduce new investigators to important aspects of hearing science and will help established inves tigators to better understand the fundamental theories and data in fields of hearing that they may not normally follow closely. Each volume is intended to present a particular topic comprehensively, and each chapter will serve as a synthetic overview and guide to the literature. As such, the chapters present neither exhaustive data reviews nor original research that has not yet appeared in peer-reviewed journals. The series focusses on topics that have developed a solid data and con ceptual foundation rather than on those for which a literature is only beginning to develop. New research areas will be covered on a timely basis in the series as they begin to mature.