Efficiency Enhanced DC-DC Converter Using Dynamic Inductor Control


Book Description

Omar Abu Mohareb proposes a novel dynamic inductor control (DIC) that can be generally applied to various DC‐DC converter types. The aim is to improve the converter efficiency throughout controlling the inductance value at all operating points without consequential complexity or increase in the inductor cost and size. The dynamic inductor control implies the maximum energy transfer (MET) concept to improve the DC‐DC converter efficiency and preserve a fast system dynamics against load changes at the same time. About the Author: Omar Abu Mohareb has earned his doctoral degree in Automotive Mechatronics Engineering from University of Stuttgart. He is now active in electromobility field and its efficient and smart infrastructure concepts. He has also earned his first patent on the proposed dynamic inductor control (DIC) concept.




DC—DC Converters for Future Renewable Energy Systems


Book Description

The book presents the analysis and control of numerous DC-DC converters widely used in several applications such as standalone, grid integration, and motor drives-based renewable energy systems. The book provides extensive simulation and practical analysis of recent and advanced DC-DC power converter topologies. This self-contained book contributes to DC-DC converters design, control techniques, and industrial as well as domestic applications of renewable energy systems. This volume will be useful for undergraduate/postgraduate students, energy planners, designers, system analysis, and system governors.




Dynamic Analysis of Switching-Mode DC/DC Converters


Book Description

The most critical part of the modern switching-mode power supply is the regulated dc/dc converter. Its dynamic behavior directly determines or influences four of the important characteristics of the power supply: • Stability of the feedback loop • Rejection of input-voltage ripple and the closely-related transient re sponse to input-voltage perturbation • Output impedance and the closely-related transient response to load perturbation • Compatibility with the input EMI filter Due to the complexity of the operation of the converter, predicting its dynamic behavior has not been easy. Without accurate prediction, and depending only on building the circuit and tinkering with it until the operation is satisfactory, the engineering cost can easily escalate and schedules can be missed. The situation is not much better when the circuit is built in the computer, using a general-purpose circuit-simulation program such as SPICE. (At the end of this book is a form for obtaining information on a computer program especially well suited for dynamic analysis of switching-mode power converters: DYANA, an acronym for "DYnamic ANAlysis. " DYANA is based on the method given in this book. ) The main goal of this book is to help the power-supply designer in the prediction of the dynamic behavior by providing user-friendly analytical tools, concrete results of already-made analyses, tabulated for easy application by the reader, and examples of how to apply the tools provided in the book.




Opportunities and Challenges in Climate-Friendly Clean Water and Energy Technologies


Book Description

Demand for energy and water is increasing as a result of rapid economic, population, and industrial growth. By 2050, it is expected that global energy consumption will nearly double in tandem with world water demand. Because of competing demands for finite resources, existing water and energy systems are limited in their ability to satisfy these expanding needs. Furthermore, rapid population and industrial development inevitably result in the generation of a significant amount of wastewater laden with toxins, persistent inorganic and organic pollutants, and other toxic emissions emitted from different sources. Opportunities and Challenges in Climate-Friendly Clean Water and Energy Technologies presents the most recent technological advancements that are relevant to environmentally friendly methods of producing clean water and a sustainable supply of energy. In order to protect against climate change, it also highlights the most recent empirical research findings in the field of cutting-edge industrial and transportation emission reduction measures. Covering key topics such as renewable energy, wastewater treatment, and biomaterials, this reference work is ideal for environmental scientists, industry professionals, researchers, practitioners, academicians, instructors, and students.




System-level Techniques for Analog Performance Enhancement


Book Description

This book shows readers to avoid common mistakes in circuit design, and presents classic circuit concepts and design approaches from the transistor to the system levels. The discussion is geared to be accessible and optimized for practical designers who want to learn to create circuits without simulations. Topic by topic, the author guides designers to learn the classic analog design skills by understanding the basic electronics principles correctly, and further prepares them to feel confident in designing high-performance, state-of-the art CMOS analog systems. This book combines and presents all in-depth necessary information to perform various design tasks so that readers can grasp essential material, without reading through the entire book. This top-down approach helps readers to build practical design expertise quickly, starting from their understanding of electronics fundamentals.










Energy Storage Systems and Power Conversion Electronics for E-Transportation and Smart Grid


Book Description

This is a reprint in book form of the Energies MDPI Journal Special Issue , entitled “Energy Storage Systems and Power Conversion Electronics for E-Transportation and Smart Grid”. The Special Issue was managed by two Guest Editors from Italy and Norway: Professor Sergio Saponara from the University of Pisa and Professor Lucian MIHET-POPA from Østfold University College, in close cooperation with the Editors from Energies. The papers published in this SI are related to the emerging trends in energy storage and power conversion electronic circuits and systems, with a specific focus on transportation electrification, and on the evolution from the electric grid to a smart grid. An extensive exploitation of renewable energy sources is foreseen for the smart grid, as well as a close integration with the energy storage and recharging systems of the electrified transportation era. Innovations at the levels of both algorithmic and hardware (i.e., power converters, electric drives, electronic control units (ECU), energy storage modules and charging stations) are proposed. Research and technology transfer activities in energy storage systems, such as batteries and super/ultra-capacitors, are essential for the success of electric transportation, and to foster the use of renewable energy sources. Energy storage systems are the key technology to solve these issues, and to increase the adoption of renewable energy sources in the smart grid.




Power Management Integrated Circuits


Book Description

Power Management Integrated Circuits and Technologies delivers a modern treatise on mixed-signal integrated circuit design for power management. Comprised of chapters authored by leading researchers from industry and academia, this definitive text: Describes circuit- and architectural-level innovations that meet advanced power and speed capabilities Explores hybrid inductive-capacitive converters for wide-range dynamic voltage scaling Presents innovative control techniques for single inductor dual output (SIDO) and single inductor multiple output (SIMO) converters Discusses cutting-edge design techniques including switching converters for analog/RF loads Compares the use of GaAs pHEMTs to CMOS devices for efficient high-frequency switching converters Thus, Power Management Integrated Circuits and Technologies provides comprehensive, state-of-the-art coverage of this exciting and emerging field of engineering.




Advances in Electromechanical Technologies


Book Description

This book comprises select peer-reviewed papers from the International Conference on Emerging Trends in Electromechanical Technologies & Management (TEMT) 2019. The focus is on current research in interdisciplinary areas of mechanical, electrical, electronics and information technologies, and their management from design to market. The book covers a wide range of topics such as computer integrated manufacturing, additive manufacturing, materials science and engineering, simulation and modelling, finite element analysis, operations and supply chain management, decision sciences, business analytics, project management, and sustainable freight transportation. The book will be of interest to researchers and practitioners of various disciplines, in particular mechanical and industrial engineering.