Efficiency of heat and work in a regional energy system


Book Description

One of the largest flows of energy in Swedish municipalities is the fuel-energy flow through the regional combined heat and power (CHP) plant. The customer products from this flow are mainly electricity to the electricity grid and heat to the building sector. There are many ways to describe and examine this fuel-energy flow, and there are many perspectives. This thesis presents one perspective. It is a top-down, analytical and numerical perspective on the efficiency of heat and work in a regional energy system. The analysis focus on the present situation in Linköping municipality and aims at describing the energy efficiency improvement potential. Three subsystems are considered, the regional production of electricity, the regional production of heat, and the regional public transport by bus. These three systems are physically all heat engines i.e. engines that derive work and/or heat from fuel combustion processes. It is important to notice that the analysis in this thesis does not describe the theoretical improvement potential, that potential is considerably higher than the implementable potential, but of no practical use. Instead the analysis is as far as possible based on real world measured efficiencies and efficiency values of best practice (Best available technology). The analysis shows that hardware investments at the CHP plant can improve the electricity generation efficiency and thereby reduce CO2 emissions. The investments are in high pressure turbines, medium pressure turbines and preheaters. The size of the improvement is hard to quantify because it depends partly on unknown factors in the surrounding electricity market. In the studied system CO2 reduction could be as high as 40 - 60 %. The regionally produced biogas would be used more efficiently if it were used in the local combined cycle gas turbine instead of being used in internal combustion engines in buses. The buses would instead be electrically driven. This use of biogas would create a better integrated fuel-energy flow and reduce heat losses. Another improvement is to reduce the system temperatures in the district heating system. The study shows that the efficiency gains, because of lower system temperatures, would increase electricity production by about 1 – 3%, and that greenhouse gas emissions would be reduced by 4 – 20%. However, these improvements are dependent on demand side investments in the district heating system and are therefore slow to implement. Ett av de största energiflödena i svenska kommuner är bränsle/energi-flödet genom det regionala kraftvärmeverket. De konsumentprodukter som detta energiflöde producerar är främst uppvärmning av bostäder och elkraft. Det finns många sätt att beskriva och utvärdera detta bränsle/energi-flöde och det finns många olika perspektiv. Det här arbetet analyserar energiflödet med en analytisk ”top-down” metod. Analysen utgår ifrån den nuvarande situationen i Linköpings kommun och avser att belysa den förbättringspotential som finns med avseende på systemets verkningsgrad. Tre delsystem har studerats, det regionala systemet för värmeproduktion, det regionala systemet för elproduktion och det regionala kollektivtrafiksystemet för innerstadstrafik med buss. Dessa tre system är fysikaliskt värmemotorer d.v.s. de är system som nyttjar termisk energi från förbränningsprocesser för att utföra ett arbete och/eller generera värme. Det är viktigt att notera att analyserna i detta arbete inte avser att beskriva en teoretisk förbättringspotential. Analyserna avser istället att belysa den praktiska, implementerbara, förbättringspotentialen. Därför har arbetet så långt som möjligt utgått ifrån uppmätta data och numeriska värden på verkningsgrader ifrån redan existerande anläggningar eller tekniska komponenter. Analyserna visar att hårdvaruinvesteringar i det lokala kraftvärmeverket skulle öka elproduktionen och därigenom sänka koldioxidutsläppen. De investeringar som skulle behöva göras är investeringar i högtrycksturbiner, mellantrycksturbiner och förvärmare. De sänkta koldioxidutsläppen är svåra att kvantifiera eftersom de delvis beror på okända faktorer på den omgivande elmarknaden. Reduktionen av koldioxidutsläppen skulle kunna vara så stor som 40 - 60 %. Den lokalt producerade biogasen skulle användas mer effektivt om den användes i den lokala gaskombi-anläggningen istället för att användas som bussbränsle som är det nuvarande användningsområdet för detta bränsle. Bussarna skulle istället kunna ersättas med elbussar. En sådan förändring av biogas-användningen skulle innebära ett bättre integrerat energisystem med lägre värmeförluster. En annan möjlig förbättring av kraftvärmesystemet är att sänka returtemperaturerna i fjärrvärmesystemet. Analyserna visar att elverkningsgraden skulle förbättras 1 – 3 % och att koldioxidutsläppen skulle kunna minska med 4 – 20 %. Dessa förbättringar skulle däremot kräva investeringar på kraftvärmesystemets kundsida och bedöms därför vara långsamma att implementera.




Climate Impacts on Energy Systems


Book Description

"While the energy sector is a primary target of efforts to arrest and reverse the growth of greenhouse gas emissions and lower the carbon footprint of development, it is also expected to be increasingly affected by unavoidable climate consequences from the damage already induced in the biosphere. Energy services and resources, as well as seasonal demand, will be increasingly affected by changing trends, increasing variability, greater extremes and large inter-annual variations in climate parameters in some regions. All evidence suggests that adaptation is not an optional add-on but an essential reckoning on par with other business risks. Existing energy infrastructure, new infrastructure and future planning need to consider emerging climate conditions and impacts on design, construction, operation, and maintenance. Integrated risk-based planning processes will be critical to address the climate change impacts and harmonize actions within and across sectors. Also, awareness, knowledge, and capacity impede mainstreaming of climate adaptation into the energy sector. However, the formal knowledge base is still nascent?information needs are complex and to a certain extent regionally and sector specific. This report provides an up-to-date compendium of what is known about weather variability and projected climate trends and their impacts on energy service provision and demand. It discusses emerging practices and tools for managing these impacts and integrating climate considerations into planning processes and operational practices in an environment of uncertainty. It focuses on energy sector adaptation, rather than mitigation which is not discussed in this report. This report draws largely on available scientific and peer-reviewed literature in the public domain and takes the perspective of the developing world to the extent possible."




Heat and Mass Transfer in Energy Systems


Book Description

In recent years, the interest of the scientific community towards efficient energy systems has significantly increased. One of the reasons is certainly related to the change in the temperature of the planet, which has increased by 0.76 °C with respect to preindustrial levels, according to the Intergovernmental Panel on Climate Change (IPCC), and is still increasing. The European Union considers it vital to prevent global warming from exceeding 2 °C with respect to pre-industrial levels, as it has been proven that this will result in irreversible and potentially catastrophic changes. These changes in climate are mainly caused by greenhouse gas emissions related to human activities, and can be drastically reduced by employing energy systems for the heating and cooling of buildings, as well as for power production, characterized by high efficiency levels and/or based on renewable energy sources. This Special Issue, published in the Energies journal, includes 13 contributions from across the world, including a wide range of applications such as hybrid residential renewable energy systems, desiccant-based air handling units, heat exchanges for engine WHR, solar chimney systems, and other interesting topics.




Low-Temperature Energy Systems with Applications of Renewable Energy


Book Description

Low-Temperature Energy Systems with Applications of Renewable Energy investigates a wide variety of low-temperature energy applications in residential, commercial, institutional, and industrial areas. It addresses the basic principles that form the groundwork for more efficient energy conversion processes and includes detailed practical methods for carrying out these critical processes. This work considers new directions in the engineering use of technical thermodynamics and energy, including more in-depth studies of the use of renewable sources, and includes worked numerical examples, review questions, and practice problems to allow readers to test their own comprehension of the material. With detailed explanations, methods, models, and algorithms, Low-Temperature Energy Systems with Applications of Renewable Energy is a valuable reference for engineers and scientists in the field of renewable energy, as well as energy researchers and academics. Features end-of chapter review sections with questions and exercises for practical study and utilization. Presents methods for a great variety of energy applications to improve their energy operations. Applies real-world data to demonstrate the impact of low-temperature energy systems on renewable energy use today.




Solar Thermal Conversion Technologies for Industrial Process Heating


Book Description

Solar Thermal Conversion Technologies for Industrial Process Heating presents a comprehensive look at the use of solar thermal energy in industrial applications, such as textiles, chemical processing, and food. The successful projects implemented in a variety of industries are shown in case studies, alongside performance assessment methodologies. The book includes various solar thermal energy conversion technologies and new techniques and applications of solar collectors in industrial sectors. Features: Covers the key designs and novel technologies employed in the processing industries Discusses challenges in the incorporation of the solar thermal system in industrial applications Explores the techno-economic, environmental impact and life cycle analysis with government policies for promoting the system Includes real-world case studies Presents chapters written by global experts in the field The book will be useful for researchers, graduate students, and industry professionals with an aim to promote mutual understanding between sectors dealing with solar thermal energy.




An Efficient Energy Future


Book Description

An Efficient Energy Future: Prospects for Europe and North America is a two-part book exploring the energy problems and policies for Europe and North America. The first part deals with energy demand problems and policies of the countries; two possible energy futures based on the scenarios of the MEDEE model; and energy demand projections for specific sectors: buildings, transport, and industry. The second part presents a collection of relevant energy demand indicators for the housing, transport, and industry sectors for all 17 covered countries.




Optimum Design of Renewable Energy Systems: Microgrid and Nature Grid Methods


Book Description

The management of global warming is a relevant issue throughout the world and has experts of various fields considering various methods to control Earth’s atmospheric temperature. While microgrid technology is emerging as the next generation energy supply system, renewable energy is often unstable and requires the support of conventional energy equipment. Optimum Design of Renewable Energy Systems: Microgrid and Nature Grid Methods investigates the development of highly efficient energy storage equipment and of operation optimization technology of compound energy systems. This book is an essential reference source for technical consultants, urban environment engineers, and energy researchers interested in the development of efficient energy systems and operation optimization technology.




2021 International Conference on Big Data Analytics for Cyber-Physical System in Smart City


Book Description

This book gathers a selection of peer-reviewed papers presented at the third Big Data Analytics for Cyber-Physical System in Smart City (BDCPS 2021) conference, held in Shanghai, China, on Nov. 27, 2021. The contributions, prepared by an international team of scientists and engineers, cover the latest advances made in the field of machine learning, and big data analytics methods and approaches for the data-driven co-design of communication, computing, and control for smart cities. Given its scope, it offers a valuable resource for all researchers and professionals interested in big data, smart cities, and cyber-physical systems.







Comprehensive Energy Systems


Book Description

Comprehensive Energy Systems, Seven Volume Set provides a unified source of information covering the entire spectrum of energy, one of the most significant issues humanity has to face. This comprehensive book describes traditional and novel energy systems, from single generation to multi-generation, also covering theory and applications. In addition, it also presents high-level coverage on energy policies, strategies, environmental impacts and sustainable development. No other published work covers such breadth of topics in similar depth. High-level sections include Energy Fundamentals, Energy Materials, Energy Production, Energy Conversion, and Energy Management. Offers the most comprehensive resource available on the topic of energy systems Presents an authoritative resource authored and edited by leading experts in the field Consolidates information currently scattered in publications from different research fields (engineering as well as physics, chemistry, environmental sciences and economics), thus ensuring a common standard and language