Guide to Elliptic Curve Cryptography


Book Description

After two decades of research and development, elliptic curve cryptography now has widespread exposure and acceptance. Industry, banking, and government standards are in place to facilitate extensive deployment of this efficient public-key mechanism. Anchored by a comprehensive treatment of the practical aspects of elliptic curve cryptography (ECC), this guide explains the basic mathematics, describes state-of-the-art implementation methods, and presents standardized protocols for public-key encryption, digital signatures, and key establishment. In addition, the book addresses some issues that arise in software and hardware implementation, as well as side-channel attacks and countermeasures. Readers receive the theoretical fundamentals as an underpinning for a wealth of practical and accessible knowledge about efficient application. Features & Benefits: * Breadth of coverage and unified, integrated approach to elliptic curve cryptosystems * Describes important industry and government protocols, such as the FIPS 186-2 standard from the U.S. National Institute for Standards and Technology * Provides full exposition on techniques for efficiently implementing finite-field and elliptic curve arithmetic * Distills complex mathematics and algorithms for easy understanding * Includes useful literature references, a list of algorithms, and appendices on sample parameters, ECC standards, and software tools This comprehensive, highly focused reference is a useful and indispensable resource for practitioners, professionals, or researchers in computer science, computer engineering, network design, and network data security.




Efficient Arithmetic for the Implementation of Elliptic Curve Cryptography


Book Description

The technology of elliptic curve cryptography is now an important branch in public-key based crypto-system. Cryptographic mechanisms based on elliptic curves depend on the arithmetic of points on the curve. The most important arithmetic is multiplying a point on the curve by an integer. This operation is known as elliptic curve scalar (or point) multiplication operation. A cryptographic device is supposed to perform this operation efficiently and securely. The elliptic curve scalar multiplication operation is performed by combining the elliptic curve point routines that are defined in terms of the underlying finite field arithmetic operations. This thesis focuses on hardware architecture designs of elliptic curve operations. In the first part, we aim at finding new architectures to implement the finite field arithmetic multiplication operation more efficiently. In this regard, we propose novel schemes for the serial-out bit-level (SOBL) arithmetic multiplication operation in the polynomial basis over F_2m̂. We show that the smallest SOBL scheme presented here can provide about 26-30\% reduction in area-complexity cost and about 22-24\% reduction in power consumptions for F_2£̂ compared to the current state-of-the-art bit-level multiplier schemes. Then, we employ the proposed SOBL schemes to present new hybrid-double multiplication architectures that perform two multiplications with latency comparable to the latency of a single multiplication. Then, in the second part of this thesis, we investigate the different algorithms for the implementation of elliptic curve scalar multiplication operation. We focus our interest in three aspects, namely, the finite field arithmetic cost, the critical path delay, and the protection strength from side-channel attacks (SCAs) based on simple power analysis. In this regard, we propose a novel scheme for the scalar multiplication operation that is based on processing three bits of the scalar in the exact same sequence of five point arithmetic operations. We analyse the security of our scheme and show that its security holds against both SCAs and safe-error fault attacks. In addition, we show how the properties of the proposed elliptic curve scalar multiplication scheme yields an efficient hardware design for the implementation of a single scalar multiplication on a prime extended twisted Edwards curve incorporating 8 parallel multiplication operations. Our comparison results show that the proposed hardware architecture for the twisted Edwards curve model implemented using the proposed scalar multiplication scheme is the fastest secure SCA protected scalar multiplication scheme over prime field reported in the literature.




Advances in Cryptology - CRYPTO 2001


Book Description

Crypto 2001, the 21st Annual Crypto conference, was sponsored by the Int- national Association for Cryptologic Research (IACR) in cooperation with the IEEE Computer Society Technical Committee on Security and Privacy and the Computer Science Department of the University of California at Santa Barbara. The conference received 156 submissions, of which the program committee selected 34 for presentation; one was later withdrawn. These proceedings contain the revised versions of the 33 submissions that were presented at the conference. These revisions have not been checked for correctness, and the authors bear full responsibility for the contents of their papers. The conference program included two invited lectures. Mark Sherwin spoke on, \Quantum information processing in semiconductors: an experimentalist’s view." Daniel Weitzner spoke on, \Privacy, Authentication & Identity: A recent history of cryptographic struggles for freedom." The conference program also included its perennial \rump session," chaired by Stuart Haber, featuring short, informal talks on late{breaking research news. As I try to account for the hours of my life that ?ew o to oblivion, I realize that most of my time was spent cajoling talented innocents into spending even more time on my behalf. I have accumulated more debts than I can ever hope to repay. As mere statements of thanks are certainly insu cient, consider the rest of this preface my version of Chapter 11.




Elliptic Curve Public Key Cryptosystems


Book Description

Elliptic curves have been intensively studied in algebraic geometry and number theory. In recent years they have been used in devising efficient algorithms for factoring integers and primality proving, and in the construction of public key cryptosystems. Elliptic Curve Public Key Cryptosystems provides an up-to-date and self-contained treatment of elliptic curve-based public key cryptology. Elliptic curve cryptosystems potentially provide equivalent security to the existing public key schemes, but with shorter key lengths. Having short key lengths means smaller bandwidth and memory requirements and can be a crucial factor in some applications, for example the design of smart card systems. The book examines various issues which arise in the secure and efficient implementation of elliptic curve systems. Elliptic Curve Public Key Cryptosystems is a valuable reference resource for researchers in academia, government and industry who are concerned with issues of data security. Because of the comprehensive treatment, the book is also suitable for use as a text for advanced courses on the subject.




Implementing Elliptic Curve Cryptography


Book Description

Implementing Elliptic Curve Cryptography proceeds step-by- step to explain basic number theory, polynomial mathematics, normal basis mathematics and elliptic curve mathematics. With these in place, applications to cryptography are introduced. The book is filled with C code to illustrate how mathematics is put into a computer, and the last several chapters show how to implement several cryptographic protocols. The most important is a description of P1363, an IEEE draft standard for public key cryptography. The main purpose of Implementing Elliptic Curve Cryptography is to help "crypto engineers" implement functioning, state-of-the- art cryptographic algorithms in the minimum time.




Cryptographic Hardware and Embedded Systems - CHES 2004


Book Description

These are the proceedings of CHES 2004, the 6th Workshop on Cryptographic Hardware and Embedded Systems. For the first time, the CHES Workshop was sponsored by the International Association for Cryptologic Research (IACR). This year, the number of submissions reached a new record. One hundred and twenty-five papers were submitted, of which 32 were selected for presentation. Each submitted paper was reviewed by at least 3 members of the program committee. We are very grateful to the program committee for their hard and efficient work in assembling the program. We are also grateful to the 108 external referees who helped in the review process in their area of expertise. In addition to the submitted contributions, the program included three - invited talks, by Neil Gershenfeld (Center for Bits and Atoms, MIT) about "Physical Information Security", by Isaac Chuang (Medialab, MIT) about "Quantum Cryptography", and by Paul Kocher (Cryptography Research) about "Phy- cal Attacks". It also included a rump session, chaired by Christof Paar, which featured informal talks on recent results. As in the previous years, the workshop focused on all aspects of cryptographic hardware and embedded system security. We sincerely hope that the CHES Workshop series will remain a premium forum for intellectual exchange in this area




Advances in Cryptology - CRYPTO '90


Book Description

Crypto '90 marked the tenth anniversary of the Crypto conferences held at the University of California at Santa Barbara. The conference was held from August 11 to August 15, 1990 and was sponsored by the International Association for Cryptologic Research, in cooperation with the IEEE Computer Society Technical Committee on Security and Privacy and the Department of Computer Science of the University of California at Santa Barbara. 227 participants from twenty countries around the world. Crypto '90 attracted Roughly 35% of attendees were from academia, 45% from industry and 20% from government. The program was intended to provide a balance between the purely theoretical and the purely practical aspects of cryptography to meet the needs and diversified interests of these various groups. The overall organization of the conference was superbly handled by the general chairperson Sherry McMahan. All of the outstanding features of Crypto, which we have come to expect over the years, were again present and, in addition to all of this, she did a magnificent job in the preparation of the book of abstracts. This is a crucial part of the program and we owe her a great deal of thanks.




Advances in Cryptology — ASIACRYPT’98


Book Description

ASIACRYPT’98, the international conference covering all aspects of theory and application of cryptology and information security, is being held at Beijing Friendship Hotel from October 18 to 22. This is the fourth of the Asiacrypt conferences. ASIACRYPT’98 is sponsored by the State Key Laboratory of Information Security (SKLOIS), University of Science and Technology of China (USTC), and the Asiacrypt Steering Committee (ASC), in cooperation with the International Association for Cryptology Research (IACR). The 16-member Program Committee organized the scientific program and considered 118 submissions. Of these, 32 were accepted for presentation. The authors’ affiliations of the 118 submissions and the 32 accepted papers range over 18 and 13 countries or regions, respectively. The submitted version of each paper was sent to all members of the Program Committee and was extensively examined by at least three committee members and/or outside experts. The review process was rigorously blinded and the anonymity of each submission are maintained until the selection was completed. We followed the traditional policy that each member of the Program Committee could be an author of at most one accepted paper. These proceedings contain the revised versions of the 32 contributed talks as well as a short note written by one invited speaker. Comments from the Program Committee were taken into account in the revisions. However, the authors (not the committee) bear full responsibility for the contents of their papers.







Efficient Algorithms for Elliptic Curve Cryptosystems using Endomorphisms


Book Description

This book focuses on fast algorithms for computing scalar multiplication (or point multiplication) on certain types of elliptic curves, as scalar multiplication is the most time-consuming operation in elliptic curve cryptography (ECC). More precisely, the text provides readers with both a theoretical perspective on the use of low Hamming weight Frobenius expansion for scalar multiplication and a practical perspective on the implementation of scalar multiplication using the above technique. ECC has a wide range of applications, including public-key encryption and digital signatures. However, along with the use of ECC in low-end devices, the goal is to improve the efficiency of the operation. The results of this book can be used for the efficient implementation of various ECC-based applications. The book will be of interest to all readers who have at least a basic grasp of the theory of elliptic curves, or are familiar with the use of cryptography. After reading this book, readers will understand both the theory and implementation of fast scalar multiplication algorithms.