A Concise Introduction to Multiagent Systems and Distributed Artificial Intelligence


Book Description

Multiagent systems is an expanding field that blends classical fields like game theory and decentralized control with modern fields like computer science and machine learning. This monograph provides a concise introduction to the subject, covering the theoretical foundations as well as more recent developments in a coherent and readable manner. The text is centered on the concept of an agent as decision maker. Chapter 1 is a short introduction to the field of multiagent systems. Chapter 2 covers the basic theory of singleagent decision making under uncertainty. Chapter 3 is a brief introduction to game theory, explaining classical concepts like Nash equilibrium. Chapter 4 deals with the fundamental problem of coordinating a team of collaborative agents. Chapter 5 studies the problem of multiagent reasoning and decision making under partial observability. Chapter 6 focuses on the design of protocols that are stable against manipulations by self-interested agents. Chapter 7 provides a short introduction to the rapidly expanding field of multiagent reinforcement learning. The material can be used for teaching a half-semester course on multiagent systems covering, roughly, one chapter per lecture.




ESSENTIALS OF AI AND SOFT COMPUTING


Book Description

The book has been primarily designed for the beginners in the subject. It has been written from the students' perspective, making it easy to understand. The contents are briefly explained with the help of examples in a direct and a pragmatic approach. Each chapter begins with the basics and is standalone; the dependence of the chapters on previous concepts has been minimized. The text is aimed to balance the mix of notation and words in mathematical statements. Artificial Intelligence and Soft Computing topics are often expressed in terms of algorithms, hence key algorithms are introduced with their explanations. These algorithms are expressed in words and in an easy to understand form of structured psuedocodes. The students should easily grasp the psuedocodes used in the text to express the algorithms, regardless of whether they have formally studied programming languages. KEY FEATURES • Short and concise explanation with examples. • Direct and pragmatic writing style. • Structured psuedocodes for explaining algorithms. • Balanced mix of notation and words in mathematical statements. • Meticulously organised chapter for effective teaching and learning. • Chapter-end Exercises to help students practice and assess their knowledge. TARGET AUDIENCE • BCA and MCA • B.Sc. Computer Science and Information Technology • B.Tech. Computer Science Engineering and Information Technology




A Concise Introduction to Decentralized POMDPs


Book Description

This book introduces multiagent planning under uncertainty as formalized by decentralized partially observable Markov decision processes (Dec-POMDPs). The intended audience is researchers and graduate students working in the fields of artificial intelligence related to sequential decision making: reinforcement learning, decision-theoretic planning for single agents, classical multiagent planning, decentralized control, and operations research.




Research and Development in Intelligent Systems XXVII


Book Description

The papers in this volume are the refereed papers presented at AI-2010, the Thirtieth SGAI International Conference on Innovative Techniques and Applications of Artificial Intelligence, held in Cambridge in December 2010 in both the technical and the application streams. They present new and innovative developments and applications, divided into technical stream sections on Intelligent Agents; Knowledge Discovery and Data Mining; Evolutionary Algorithms, Bayesian Networks and Model-Based Diagnosis; Machine Learning; Planning and Scheduling, followed by application stream sections on Applications of Machine Learning I and II; AI for Scheduling and AI in Action. The volume also includes the text of short papers presented as posters at the conference. This is the twenty-seventh volume in the Research and Development in Intelligent Systems series, which also incorporates the eighteenth volume in the Applications and Innovations in Intelligent Systems series. These series are essential reading for those who wish to keep up to date with developments in this important field.







A distributed multi-vehicle pursuit scheme: generative multi-adversarial reinforcement learning


Book Description

Multi-vehicle pursuit (MVP) is one of the most challenging problems for intelligent traffic management systems due to multi-source heterogeneous data and its mission nature. While many reinforcement learning (RL) algorithms have shown promising abilities for MVP in structured grid-pattern roads, their lack of dynamic and effective traffic awareness limits pursuing efficiency. The sparse reward of pursuing tasks still hinders the optimization of these RL algorithms. Therefore, this paper proposes a distributed generative multi-adversarial RL for MVP (DGMARL-MVP) in urban traffic scenes. In DGMARL-MVP, a generative multi-adversarial network is designed to improve the Bellman equation by generating the potential dense reward, thereby properly guiding strategy optimization of distributed multi-agent RL. Moreover, a graph neural network-based intersecting cognition is proposed to extract integrated features of traffic situations and relationships among agents from multi-source heterogeneous data. These integrated and comprehensive traffic features are used to assist RL decision-making and improve pursuing efficiency. Extensive experimental results show that the DGMARL-MVP can reduce the pursuit time by 5.47% compared with proximal policy optimization and improve the pursuing average success rate up to 85.67%. Codes are open-sourced in Github.




Distributed Sensor Networks


Book Description

Distributed Sensor Networks is the first book of its kind to examine solutions to this problem using ideas taken from the field of multiagent systems. The field of multiagent systems has itself seen an exponential growth in the past decade, and has developed a variety of techniques for distributed resource allocation. Distributed Sensor Networks contains contributions from leading, international researchers describing a variety of approaches to this problem based on examples of implemented systems taken from a common distributed sensor network application; each approach is motivated, demonstrated and tested by way of a common challenge problem. The book focuses on both practical systems and their theoretical analysis, and is divided into three parts: the first part describes the common sensor network challenge problem; the second part explains the different technical approaches to the common challenge problem; and the third part provides results on the formal analysis of a number of approaches taken to address the challenge problem.




Optimal Control and Estimation


Book Description

Graduate-level text provides introduction to optimal control theory for stochastic systems, emphasizing application of basic concepts to real problems. "Invaluable as a reference for those already familiar with the subject." — Automatica.




Stochastic Hybrid Systems


Book Description

Because they incorporate both time- and event-driven dynamics, stochastic hybrid systems (SHS) have become ubiquitous in a variety of fields, from mathematical finance to biological processes to communication networks to engineering. Comprehensively integrating numerous cutting-edge studies, Stochastic Hybrid Systems presents a captivating treatment of some of the most ambitious types of dynamic systems. Cohesively edited by leading experts in the field, the book introduces the theoretical basics, computational methods, and applications of SHS. It first discusses the underlying principles behind SHS and the main design limitations of SHS. Building on these fundamentals, the authoritative contributors present methods for computer calculations that apply SHS analysis and synthesis techniques in practice. The book concludes with examples of systems encountered in a wide range of application areas, including molecular biology, communication networks, and air traffic management. It also explains how to resolve practical problems associated with these systems. Stochastic Hybrid Systems achieves an ideal balance between a theoretical treatment of SHS and practical considerations. The book skillfully explores the interaction of physical processes with computerized equipment in an uncertain environment, enabling a better understanding of sophisticated as well as everyday devices and processes.




Constraint-based Local Search


Book Description

The ubiquity of combinatorial optimization problems in our society is illustrated by the novel application areas for optimization technology, which range from supply chain management to sports tournament scheduling. Over the last two decades, constraint programming has emerged as a fundamental methodology to solve a variety of combinatorial problems, and rich constraint programming languages have been developed for expressing and combining constraints and specifying search procedures at a high level of abstraction. Local search approaches to combinatorial optimization are able to isolate optimal or near-optimal solutions within reasonable time constraints. This book introduces a method for solving combinatorial optimization problems that combines constraint programming and local search, using constraints to describe and control local search, and a programming language, COMET, that supports both modeling and search abstractions in the spirit of constraint programming. After an overview of local search including neighborhoods, heuristics, and metaheuristics, the book presents the architecture and modeling and search components of constraint-based local search and describes how constraint-based local search is supported in COMET. The book describes a variety of applications, arranged by meta-heuristics. It presents scheduling applications, along with the background necessary to understand these challenging problems. The book also includes a number of satisfiability problems, illustrating the ability of constraint-based local search approaches to cope with both satisfiability and optimization problems in a uniform fashion.