Discrete Choice Methods with Simulation


Book Description

This book describes the new generation of discrete choice methods, focusing on the many advances that are made possible by simulation. Researchers use these statistical methods to examine the choices that consumers, households, firms, and other agents make. Each of the major models is covered: logit, generalized extreme value, or GEV (including nested and cross-nested logits), probit, and mixed logit, plus a variety of specifications that build on these basics. Simulation-assisted estimation procedures are investigated and compared, including maximum stimulated likelihood, method of simulated moments, and method of simulated scores. Procedures for drawing from densities are described, including variance reduction techniques such as anithetics and Halton draws. Recent advances in Bayesian procedures are explored, including the use of the Metropolis-Hastings algorithm and its variant Gibbs sampling. The second edition adds chapters on endogeneity and expectation-maximization (EM) algorithms. No other book incorporates all these fields, which have arisen in the past 25 years. The procedures are applicable in many fields, including energy, transportation, environmental studies, health, labor, and marketing.







Convergence of Stochastic Processes


Book Description

Functionals on stochastic processes; Uniform convergence of empirical measures; Convergence in distribution in euclidean spaces; Convergence in distribution in metric spaces; The uniform metric on space of cadlag functions; The skorohod metric on D [0, oo); Central limit teorems; Martingales.




Econometric Analysis of Discrete Choice


Book Description

This book is a treatise on empirical microeconomics: it describes the econometric theory of qualitative choice models and the empirical practice of modeling consumer demand for a heterogeneous commodity, housing. Accordingly, the book has two parts. The first part gives a self-contained survey of discrete choice models with emphasis on nested and related multinomial logit models. The second part concentrates on three sUbstantive questions about housing demand and how they can be answered using discrete choice models. Why combine these two distinct parts in one book? It is the interaction between theory and application in empirical microeconomics on which we focus in this book. Hence, emphasis in the methodological part is on practicability, and emphasis in the applied part is on the usage of the proper econometric specifications. Econometrics means measuring economic phenomena. Because nature (ironically, in the case of economics, this is most often the government) rarely provides us with well-defined economic experiments, measurement of economic phenomena usually requires an elaborate statistical apparatus that is able to separate concurrent and confounding phenomena. Discrete choice models have proved to be a very convenient apparatus to study the complex issues in housing demand. We present models, techniques, and statistical problems of discrete choice in the first and methodological part of the book, written in conventional textbook style.




Modeling Ordered Choices


Book Description

It is increasingly common for analysts to seek out the opinions of individuals and organizations using attitudinal scales such as degree of satisfaction or importance attached to an issue. Examples include levels of obesity, seriousness of a health condition, attitudes towards service levels, opinions on products, voting intentions, and the degree of clarity of contracts. Ordered choice models provide a relevant methodology for capturing the sources of influence that explain the choice made amongst a set of ordered alternatives. The methods have evolved to a level of sophistication that can allow for heterogeneity in the threshold parameters, in the explanatory variables (through random parameters), and in the decomposition of the residual variance. This book brings together contributions in ordered choice modeling from a number of disciplines, synthesizing developments over the last fifty years, and suggests useful extensions to account for the wide range of sources of influence on choice.




The Econometrics of Complex Survey Data


Book Description

This volume of Advances in Econometrics contains a selection of papers presented at the 'Econometrics of Complex Survey Data: Theory and Applications' conference organized by the Bank of Canada, Ottawa, Canada, from October 19-20, 2017.




Structural Analysis of Discrete Data with Econometric Applications


Book Description

The thirteen papers in "Structural Analysis of Discrete Data" are previously unpublished major research contributions solicited by the editors. They have been specifically prepared to fulfill the two-fold purpose of the volume, first to provide the econometrics student with an overview of the present extent of the subject and to delineate the boundaries of current research, both in terms of methodology and applications. "Coordinated publication of important findings" should, as the editors state, "lower the cost of entry into the field and speed dissemination of recent research into the graduate econometrics classroom."A second purpose of the volume is to communicate results largely reported in the econometrics literature to a wider community of researchers to whom they are directly relevant, including applied econometricians, statisticians in the area of discrete multivariate analysis, specialists in biometrics, psychometrics, and sociometrics, and analysts in various applied fields such as finance, marketing, and transportation.The papers are grouped into four sections: "Statistical Analysis of Discrete Probability Models, " with papers by the editors and by Steven Cosslett; "Dynamic Discrete Probability Models, " consisting of two contributions by James Heckman; "Structural Discrete Probability Models Derived from Theories of Choice, " with papers by Daniel McFadden, Gregory Fischer and Daniel Nagin, Steven Lerman and Charles Manski, and Moshe Ben-Akiva and Thawat Watanatada; and "Simultaneous Systems Models with Discrete Endogenous Variables, " with contributions by Lung-Fei Lee, Jerry Hausman and David Wise, Dale Poirier, Peter Schmidt, and Robert Avery.Among the applications treated are income maintenance experiments, physician behavior, consumer credit, and intra-urban location and transportation.




Applied Discrete-Choice Modelling


Book Description

Originally published in 1981. Discrete-choice modelling is an area of econometrics where significant advances have been made at the research level. This book presents an overview of these advances, explaining the theory underlying the model, and explores its various applications. It shows how operational choice models can be used, and how they are particularly useful for a better understanding of consumer demand theory. It discusses particular problems connected with the model and its use, and reports on the authors’ own empirical research. This is a comprehensive survey of research developments in discrete choice modelling and its applications.




Handbook of Econometrics


Book Description

The Handbook is a definitive reference source and teaching aid for econometricians. It examines models, estimation theory, data analysis and field applications in econometrics.




Discrete Choice Analysis


Book Description

Discrete Choice Analysis presents these results in such a way that they are fully accessible to the range of students and professionals who are involved in modelling demand and consumer behavior in general or specifically in transportation - whether from the point of view of the design of transit systems, urban and transport economics, public policy, operations research, or systems management and planning. The methods of discrete choice analysis and their applications in the modelling of transportation systems constitute a comparatively new field that has largely evolved over the past 15 years. Since its inception, however, the field has developed rapidly, and this is the first text and reference work to cover the material systematically, bringing together the scattered and often inaccessible results for graduate students and professionals. Discrete Choice Analysis presents these results in such a way that they are fully accessible to the range of students and professionals who are involved in modelling demand and consumer behavior in general or specifically in transportation - whether from the point of view of the design of transit systems, urban and transport economics, public policy, operations research, or systems management and planning. The introductory chapter presents the background of discrete choice analysis and context of transportation demand forecasting. Subsequent chapters cover, among other topics, the theories of individual choice behavior, binary and multinomial choice models, aggregate forecasting techniques, estimation methods, tests used in the process of model development, sampling theory, the nested-logit model, and systems of models. Discrete Choice Analysis is ninth in the MIT Press Series in Transportation Studies, edited by Marvin Manheim.