Efficient Extreme Ultra-Violet Mirror Design


Book Description

Extreme ultraviolet (EUV) lithography is a next generation platform with the potential to extend Moore's Law. The EUV mirror is a fundamental component of this system. Efficient Extreme Ultraviolet Mirror Design describes an approach to designing EUV mirrors with reduced computational time and memory requirements, providing a comprehensive grounding in the fundamentals of the EUV mirror and knowledge of the finite-difference time-domain (FDTD) method. The discussion is made timely by the opening of commercial avenues for the application of EUV as it begins to be implemented in the development of 5G, AI, edge computing, VR and the Internet of Things. This book explores the theory, function and fabrication of EUV mirrors, as well as the correlation between design by Fresnel's equations and design by photonic bands, and develops a rigorous and efficient FDTD method by applying these considerations to three simulation cases. Intended primarily for EUV industry professionals, Efficient Extreme Ultraviolet Mirror Design will be of particular use to researchers investigating large scale problems or near-field scattering problems in EUV lithography. It will serve as an excellent reference text for anyone working in or studying optical engineering, as well as a high-level introduction for researchers from other fields interested in photolithography and the FDTD method. Key Features Addresses knowledge of extreme ultraviolet (EUV) mirrors and EUV lithography. Establishes a relation between photonic bands and Fresnel's equation. Introduces the high reflectivity EUV mirror design rules. Applies numerical simulation for EUV mirror design. Details efficient finite-difference time-domain (FDTD) approach.




Efficient Extreme Ultraviolet Mirror Design


Book Description

Extreme ultraviolet (EUV) lithography is a next generation platform with the potential to extend Moore's Law. The EUV mirror is a fundamental component of this system. Efficient Extreme Ultraviolet Mirror Design describes an approach to designing EUV mirrors with reduced computational time and memory requirements, providing a comprehensive grounding in the fundamentals of the EUV mirror and knowledge of the finite-difference time-domain (FDTD) method. The discussion is made timely by the opening of commercial avenues for the application of EUV as it begins to be implemented in the development of 5G, AI, edge computing, VR and the Internet of Things. This book explores the theory, function and fabrication of EUV mirrors, as well as the correlation between design by Fresnel's equations and design by photonic bands, and develops a rigorous and efficient FDTD method by applying these considerations to three simulation cases. Intended primarily for EUV industry professionals, Efficient Extreme Ultraviolet Mirror Design will be of particular use to researchers investigating large scale problems or near-field scattering problems in EUV lithography. It will serve as an excellent reference text for anyone working in or studying optical engineering, as well as a high-level introduction for researchers from other fields interested in photolithography and the FDTD method.




Extreme Ultraviolet Astronomy


Book Description

This book describes the development of astronomy in the Extreme Ultraviolet wavelength range, from the first rocket-based experiments to later satellite missions. It will be of great value to graduate students and researchers.




EUV Lithography


Book Description

Editorial Review Dr. Bakshi has compiled a thorough, clear reference text covering the important fields of EUV lithography for high-volume manufacturing. This book has resulted from his many years of experience in EUVL development and from teaching this subject to future specialists. The book proceeds from an historical perspective of EUV lithography, through source technology, optics, projection system design, mask, resist, and patterning performance, to cost of ownership. Each section contains worked examples, a comprehensive review of challenges, and relevant citations for those who wish to further investigate the subject matter. Dr. Bakshi succeeds in presenting sometimes unfamiliar material in a very clear manner. This book is also valuable as a teaching tool. It has become an instant classic and far surpasses others in the EUVL field. --Dr. Akira Endo, Chief Development Manager, Gigaphoton Inc. Description Extreme ultraviolet lithography (EUVL) is the principal lithography technology aiming to manufacture computer chips beyond the current 193-nm-based optical lithography, and recent progress has been made on several fronts: EUV light sources, optics, optics metrology, contamination control, masks and mask handling, and resists. This comprehensive volume is comprised of contributions from the world's leading EUVL researchers and provides all of the critical information needed by practitioners and those wanting an introduction to the field. Interest in EUVL technology continues to increase, and this volume provides the foundation required for understanding and applying this exciting technology. About the editor of EUV Lithography Dr. Vivek Bakshi previously served as a senior member of the technical staff at SEMATECH; he is now president of EUV Litho, Inc., in Austin, Texas.




Extreme Ultraviolet Astronomy


Book Description

The field of extreme ultraviolet astronomy will see two major satellite observatories to be launched in 1991, one by ESA (ROSAT mission), one by NASA (EUVE mission). These Proceedings discuss the potential for EUV Astronomy, results from recent missions, approved and possible future missions and new developments in EUV technology.




Optical Technologies for Extreme-Ultraviolet and Soft X-ray Coherent Sources


Book Description

The book reviews the most recent achievements in optical technologies for XUV and X-ray coherent sources. Particular attention is given to free-electron-laser facilities, but also to other sources available at present, such as synchrotrons, high-order laser harmonics and X-ray lasers. The optical technologies relevant to each type of source are discussed. In addition, the main technologies used for photon handling and conditioning, namely multilayer mirrors, adaptive optics, crystals and gratings are explained. Experiments using coherent light received during the last decades a lot of attention for the X-ray regime. Strong efforts were taken for the realization of almost fully coherent sources, e.g. the free-electron lasers, both as independent sources in the femtosecond and attosecond regimes and as seeding sources for free-electron-lasers and X-ray gas lasers. In parallel to the development of sources, optical technologies for photon handling and conditioning of such coherent and intense X-ray beams advanced. New problems were faced for the realization of optical components of beamlines demanding to manage coherent X-ray photons, e.g. the preservation of coherence and time structure of ultra short pulses.










Astrophysics in the Extreme Ultraviolet


Book Description

From the beginning of Space Astronomy, the Extreme Ultraviolet band of the spectrum (roughly defined as the decade in energy from 90-900 Å) was deemed to be the `unobservable ultraviolet'. Pioneering results from an EUV telescope on the Apollo-Soyuz Mission in 1975 forcibly demonstrated that this view was incorrect; but it required the all-sky surveys of the English Wide-Field Camera and the Extreme Ultraviolet Explorer to demonstrate the broad potential of this field. Over 700 EUV sources have now been detected. Over 150 researchers from 16 countries gathered to share results in this new field at the International Astronomical Union Colloquium No. 152. Papers were presented on a wide variety of topics including cool star coronae, white dwarf atmospheres and evolution, neutron stars, the Io torus, cataclysmic variable stars, active galactic nuclei, the interstellar medium, winds and atmospheres of early type stars, and EUV plasma diagnostics. Selected manuscripts from this meeting are provided in these Conference Proceedings.