Resource Allocation in Uplink OFDMA Wireless Systems


Book Description

Tackling problems from the least complicated to the most, Resource Allocation in Uplink OFDMA Wireless Systems provides readers with a comprehensive look at resource allocation and scheduling techniques (for both single and multi-cell deployments) in uplink OFDMA wireless networks relying on convex optimization and game theory to thoroughly analyze performance. Inside, readers will find topics and discussions on: Formulating and solving the uplink ergodic sum-rate maximization problem Proposing suboptimal algorithms that achieve a close performance to the optimal case at a considerably reduced complexity and lead to fairness when the appropriate utility is used Investigating the performance and extensions of the proposed suboptimal algorithms in a distributed base station scenario Studying distributed resource allocation where users take part in the scheduling process, and considering scenarios with and without user collaboration Formulating the sum-rate maximization problem in a multi-cell scenario, and proposing efficient centralized and distributed algorithms for intercell interference mitigation Discussing the applicability of the proposed techniques to state-of-the-art wireless technologies, LTE and WiMAX, and proposing relevant extensions Along with schematics and figures featuring simulation results, Resource Allocation in Uplink OFDMA Wireless Systems is a valuable book for?wireless communications and cellular systems professionals and students.




Resource Allocation for OFDMA Systems


Book Description

This book introduces the sources and historic collection campaigns of resource allocation in wireless communication systems. The unique characteristics of MIMO-OFDMA systems are thoroughly studied and summarized. Remarks on resource allocation and spectrum sharing are also presented, which demonstrate the great value of resource allocation techniques, but also introduce distinct challenges of resource allocation in MIMO-OFDMA systems. Novel resource allocation techniques for OFDMA Systems are surveyed from various applications (e.g., for unicast, or multicast with Guaranteed BER and Rate, subcarrier and power allocation with various detectors, low-complexity energyefficient resource allocation, etc.) in this book. Due to the high mobility and low latency requirements of 5G wireless communications, this book discusses how to deal with the imperfect CSI. It also discusses how to deal with e.g., throughput maximization, outage probabilities maximization and guarantee, energy efficiency, physical-layer security issues with feedback channel capacity constraints, in order to characterize and understand the applications of practical scenes. This book will target professionals & researchers working in the fields of Wireless Communications and Networking, Resource Allocation and Transmissions. Advanced-level students in electrical engineering and computer science will also find this book useful as a secondary textbook.




Cloud Radio Access Networks


Book Description

The first book on Cloud Radio Access Networks (C-RANs), covering fundamental theory, current techniques, and potential applications.




Optimization Methods for User Admissions and Radio Resource Allocation for Multicasting over High Altitude Platforms


Book Description

This book focuses on the issue of optimizing radio resource allocation (RRA) and user admission control (AC) for multiple multicasting sessions on a single high altitude platform (HAP) with multiple antennas on-board. HAPs are quasi-stationary aerial platforms that carry a wireless communications payload to provide wireless communications and broadband services. They are meant to be located in the stratosphere layer of the atmosphere at altitudes in the range 17-22 km and have the ability to fly on demand to temporarily or permanently serve regions with unavailable telecommunications infrastructure. An important requirement that the book focusses on is the development of an efficient and effective method for resource allocation and user admissions for HAPs, especially when it comes to multicasting. Power, frequency, space (antennas selection) and time (scheduling) are the resources considered in the problem over an orthogonal frequency division multiple access (OFDMA) HAP system.Due to the strong dependence of the total number of users that could join different multicast groups, on the possible ways we may allocate resources to these groups, it is of significant importance to consider a joint user to session assignments and RRA across the groups. From the service provider's point of view, it would be in its best interest to be able to admit as many higher priority users as possible, while satisfying their quality of service requirements. High priority users could be users subscribed in and paying higher for a service plan that gives them preference of admittance to receive more multicast transmissions, compared to those paying for a lower service plan. Also, the user who tries to join multiple multicast groups (i.e. receive more than one multicast transmission), would have preferences for which one he would favor to receive if resources are not enough to satisfy the QoS requirements.Technical topics discussed in the book include: • Overview on High Altitude Platforms, their different types and the recent works in this area Radio Resource Allocation and User Admission Control in HAPs  Multicasting in a Single HAP System: System Model and Mathematical Formulation  Optimization schemes that are designed to enhance the performance of a branch and bound technique by taking into account special mathematical structure in the problem formulation




Optimization Techniques in Resource Allocation of Wireless Communication Systems


Book Description

Scientific Study from the year 2016 in the subject Engineering - Communication Technology, Mahalingam College of Engineering and Technology, language: English, abstract: The future Wireless Communication Systems (WCS) are supposed to provide high data rate to support personal and multimedia communications irrespective of the users' mobility and location. These services include heterogeneous classes of traffics such as voice, file transfer, web browsing, wireless multimedia, teleconferencing, and interactive games. In recent years, data and multimedia services have become important in wireless communications. As a result, bandwidth requirement and number of users become delicate problems. To support high data rate requirement for future WCS, it is essential to efficiently allocate the limited resources. The major challenges are the dynamic nature of wireless channel, limited resources such as power, frequency spectrum, and diversified Quality of Service (QoS) requirements. Orthogonal Frequency Division Multiplexing (OFDM) is a special case of multicarrier transmission that supports high data rate operation. OFDM is a modulation and multiplexing technique appropriate for current and future wireless networks. OFDM divides the available bandwidth into a number of parallel independent orthogonal subchannels and their bandwidth is much less than the coherence bandwidth of the channel. The wide band frequency selective fading channel is converted into several narrow band flat fading channels. OFDM is an excellent method to overcome multipath fading effects. One of the goals of WCS is to enhance the capacity of the channel. Multiple Access Technique (MAT) permits several mobile users to share the given bandwidth in an effective way. Basically there are four multiple access techniques available namely, Time Division Multiple Access (TDMA), Frequency Division Multiple access (FDMA), Code Division Multiple Access (CDMA) and Space Division Multiple Access (SDMA). MAT is employ




Proceedings of the International Conference on Soft Computing Systems


Book Description

The book is a collection of high-quality peer-reviewed research papers presented in International Conference on Soft Computing Systems (ICSCS 2015) held at Noorul Islam Centre for Higher Education, Chennai, India. These research papers provide the latest developments in the emerging areas of Soft Computing in Engineering and Technology. The book is organized in two volumes and discusses a wide variety of industrial, engineering and scientific applications of the emerging techniques. It presents invited papers from the inventors/originators of new applications and advanced technologies.




Radio Resource Management in Wireless Networks


Book Description

This book allows readers to gain an in-depth understanding of resource allocation problems in wireless networks and the techniques used to solve them.




Game Theory in Wireless and Communication Networks


Book Description

This unified 2001 treatment of game theory focuses on finding state-of-the-art solutions to issues surrounding the next generation of wireless and communications networks. The key results and tools of game theory are covered, as are various real-world technologies and a wide range of techniques for modeling, design and analysis.




Advances in Computing and Communications, Part I


Book Description

This volume is the first part of a four-volume set (CCIS 190, CCIS 191, CCIS 192, CCIS 193), which constitutes the refereed proceedings of the First International Conference on Computing and Communications, ACC 2011, held in Kochi, India, in July 2011. The 68 revised full papers presented in this volume were carefully reviewed and selected from a large number of submissions. The papers are organized in topical sections on ad hoc networks; advanced micro architecture techniques; autonomic and context-aware computing; bioinformatics and bio-computing; cloud, cluster, grid and P2P computing; cognitive radio and cognitive networks; cyber forensics; database and information systems.




Drift Fields, a Method for Resource Allocation in Wireless Networks


Book Description

This dissertation recommends system engineering designs that implement the latest technologies in OFDMA cellular and femtocellular networks, specifically in the area of resource allocation and interference coordination. These recommended designs guarantee good user experience for time-sensitive applications such as streaming video. While throughput is often the metric used to benchmark a system, field performance requires the system also guarantees a maximum service latency to satisfy users. This dissertation provides both intuitive and low-overhead schemes that are robust and practical for implementation. The novelty of this work is the application of stochastic control techniques that guarantee the Quality of Service (QoS) through proper buffer management. Guarantee of a non-empty user buffer for streaming applications prevents service interruption. The thesis considers both centralized and distributed topologies that result from either a single base-station serving many users, or many femtocell base-stations each serving a single user, respectively. This dissertation provides insight and solutions to the following question: Under the constraints of buffer management, how does a system engineer determine the transmission scheme, resource allocation algorithms, transmitter coordination, user feedback, and achievable QoS guarantees that maximize efficiency. A combination of theory, heuristics motivated in theory, and numerical simulations will justify the presented methods.