High-Dimensional Single Cell Analysis


Book Description

This volume highlights the most interesting biomedical and clinical applications of high-dimensional flow and mass cytometry. It reviews current practical approaches used to perform high-dimensional experiments and addresses key bioinformatic techniques for the analysis of data sets involving dozens of parameters in millions of single cells. Topics include single cell cancer biology; studies of the human immunome; exploration of immunological cell types such as CD8+ T cells; decipherment of signaling processes of cancer; mass-tag cellular barcoding; analysis of protein interactions by proximity ligation assays; Cytobank, a platform for the analysis of cytometry data; computational analysis of high-dimensional flow cytometric data; computational deconvolution approaches for the description of intracellular signaling dynamics and hyperspectral cytometry. All 10 chapters of this book have been written by respected experts in their fields. It is an invaluable reference book for both basic and clinical researchers.




Biocomputing 2017


Book Description

The Pacific Symposium on Biocomputing (PSB) 2017 is an international, multidisciplinary conference for the presentation and discussion of current research in the theory and application of computational methods in problems of biological significance. Presentations are rigorously peer reviewed and are published in an archival proceedings volume. PSB 2017 will be held on January 4 – 8, 2017 in Kohala Coast, Hawaii. Tutorials and workshops will be offered prior to the start of the conference. PSB 2017 will bring together top researchers from the US, the Asian Pacific nations, and around the world to exchange research results and address open issues in all aspects of computational biology. It is a forum for the presentation of work in databases, algorithms, interfaces, visualization, modeling, and other computational methods, as applied to biological problems, with emphasis on applications in data-rich areas of molecular biology. The PSB has been designed to be responsive to the need for critical mass in sub-disciplines within biocomputing. For that reason, it is the only meeting whose sessions are defined dynamically each year in response to specific proposals. PSB sessions are organized by leaders of research in biocomputing's "hot topics." In this way, the meeting provides an early forum for serious examination of emerging methods and approaches in this rapidly changing field.




Principal Component Analysis


Book Description

Principal component analysis is probably the oldest and best known of the It was first introduced by Pearson (1901), techniques ofmultivariate analysis. and developed independently by Hotelling (1933). Like many multivariate methods, it was not widely used until the advent of electronic computers, but it is now weIl entrenched in virtually every statistical computer package. The central idea of principal component analysis is to reduce the dimen sionality of a data set in which there are a large number of interrelated variables, while retaining as much as possible of the variation present in the data set. This reduction is achieved by transforming to a new set of variables, the principal components, which are uncorrelated, and which are ordered so that the first few retain most of the variation present in all of the original variables. Computation of the principal components reduces to the solution of an eigenvalue-eigenvector problem for a positive-semidefinite symmetrie matrix. Thus, the definition and computation of principal components are straightforward but, as will be seen, this apparently simple technique has a wide variety of different applications, as weIl as a number of different deri vations. Any feelings that principal component analysis is a narrow subject should soon be dispelled by the present book; indeed some quite broad topics which are related to principal component analysis receive no more than a brief mention in the final two chapters.




Advanced Computational Intelligence in Healthcare-7


Book Description

This book presents state-of-the-art works and systematic reviews in the emerging field of computational intelligence (CI) in electronic health care. The respective chapters present surveys and practical examples of artificial intelligence applications in the areas of Human-Machine Interface (HMI) and affective computing, machine learning, big health data and visualization analytics, computer vision and medical image analysis. The book also addresses new and emerging topics in CI for health care such as the utilization of Social Media (SM) and the introduction of new intelligent paradigms in the security and privacy domains, which are critical for the health sector. The chapters, while of course not exhaustively addressing all the possible aspects of the aforementioned areas, are indicative of the dynamic nature of interdisciplinary research being pursued. Accordingly, the book is intended not only for researchers in the respective fields, but also for medical and administrative personnel working in the health sector, as well as managers and stakeholders responsible for making strategic decisions and defining public health policies.







Applications of Synthetic High Dimensional Data


Book Description

The need for tailored data for machine learning models is often unsatisfied, as it is considered too much of a risk in the real-world context. Synthetic data, an algorithmically birthed counterpart to operational data, is the linchpin for overcoming constraints associated with sensitive or regulated information. In high-dimensional data, where the dimensions of features and variables often surpass the number of available observations, the emergence of synthetic data heralds a transformation. Applications of Synthetic High Dimensional Data delves into the algorithms and applications underpinning the creation of synthetic data, which surpass the capabilities of authentic datasets in many cases. Beyond mere mimicry, synthetic data takes center stage in prioritizing the mathematical domain, becoming the crucible for training robust machine learning models. It serves not only as a simulation but also as a theoretical entity, permitting the consideration of unforeseen variables and facilitating fundamental problem-solving. This book navigates the multifaceted advantages of synthetic data, illuminating its role in protecting the privacy and confidentiality of authentic data. It also underscores the controlled generation of synthetic data as a mechanism to safeguard private information while maintaining a controlled resemblance to real-world datasets. This controlled generation ensures the preservation of privacy and facilitates learning across datasets, which is crucial when dealing with incomplete, scarce, or biased data. Ideal for researchers, professors, practitioners, faculty members, students, and online readers, this book transcends theoretical discourse.




Genes & Signals


Book Description

P. 103.




Hi-C Data Analysis


Book Description

This volume details a comprehensive set of methods and tools for Hi-C data processing, analysis, and interpretation. Chapters cover applications of Hi-C to address a variety of biological problems, with a specific focus on state-of-the-art computational procedures adopted for the data analysis. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Hi-C Data Analysis: Methods and Protocols aims to help computational and molecular biologists working in the field of chromatin 3D architecture and transcription regulation.




Topological and Statistical Methods for Complex Data


Book Description

This book contains papers presented at the Workshop on the Analysis of Large-scale, High-Dimensional, and Multi-Variate Data Using Topology and Statistics, held in Le Barp, France, June 2013. It features the work of some of the most prominent and recognized leaders in the field who examine challenges as well as detail solutions to the analysis of extreme scale data. The book presents new methods that leverage the mutual strengths of both topological and statistical techniques to support the management, analysis, and visualization of complex data. It covers both theory and application and provides readers with an overview of important key concepts and the latest research trends. Coverage in the book includes multi-variate and/or high-dimensional analysis techniques, feature-based statistical methods, combinatorial algorithms, scalable statistics algorithms, scalar and vector field topology, and multi-scale representations. In addition, the book details algorithms that are broadly applicable and can be used by application scientists to glean insight from a wide range of complex data sets.




Recent Advances in Next-Generation Data Science


Book Description

This book constitutes the refereed proceedings of the Third Southwest Data Science Conference, on Recent advances in next-generation data science, SDSC 2024, held in Waco, TX, USA, in March 22, 2024. The 15 full papers presented were carefully reviewed and selected from 59 submissions. These papers focus on AI security in next-generation data science and address a range of challenges, from protecting sensitive data to mitigating adversarial threats.