Spectral Perturbation & Optimization of Matrix Pencils


Book Description

In this thesis we study the eigenvalues of linear matrix pencils and their behavior under perturbations of the pencil coefficients. In particular we address (i) Possibility of eigenvalue assignment under structured rank-one perturbations; (ii) Distance to nearest pencils with a prescribed set of eigenvalues in norm and gap distance; (iii) Computing nearest matrix pencils with prescribed eigenvalues using structured perturbations. In (i) and (ii) we exploit the connection between matrix pencils and certain subspaces via their Weyr characteristics. This provides a way of lifting perturbation measures for subspaces such as the gap distance to the set of matrix pencils. In (iii) one has to solve a large scale non-convex optimization problem which appears e.g. in optimal redesign of integrated circuits. We show how feasible solutions close to the optimal value can be computed. Finally, this is used to improve the bandwidth of two circuits (two-stage CMOS & μA741).




Numerical Methods for Large Eigenvalue Problems


Book Description

This revised edition discusses numerical methods for computing eigenvalues and eigenvectors of large sparse matrices. It provides an in-depth view of the numerical methods that are applicable for solving matrix eigenvalue problems that arise in various engineering and scientific applications. Each chapter was updated by shortening or deleting outdated topics, adding topics of more recent interest, and adapting the Notes and References section. Significant changes have been made to Chapters 6 through 8, which describe algorithms and their implementations and now include topics such as the implicit restart techniques, the Jacobi-Davidson method, and automatic multilevel substructuring.




Matrices: Algebra, Analysis And Applications


Book Description

This volume deals with advanced topics in matrix theory using the notions and tools from algebra, analysis, geometry and numerical analysis. It consists of seven chapters that are loosely connected and interdependent. The choice of the topics is very personal and reflects the subjects that the author was actively working on in the last 40 years. Many results appear for the first time in the volume. Readers will encounter various properties of matrices with entries in integral domains, canonical forms for similarity, and notions of analytic, pointwise and rational similarity of matrices with entries which are locally analytic functions in one variable. This volume is also devoted to various properties of operators in inner product space, with tensor products and other concepts in multilinear algebra, and the theory of non-negative matrices. It will be of great use to graduate students and researchers working in pure and applied mathematics, bioinformatics, computer science, engineering, operations research, physics and statistics.




Inverse Eigenvalue Problems


Book Description

Inverse eigenvalue problems arise in a remarkable variety of applications and associated with any inverse eigenvalue problem are two fundamental questions--the theoretical issue of solvability and the practical issue of computability. Both questions are difficult and challenging. In this text, the authors discuss the fundamental questions, some known results, many applications, mathematical properties, a variety of numerical techniques, as well as several open problems.This is the first book in the authoritative Numerical Mathematics and Scientific Computation series to cover numerical linear algebra, a broad area of numerical analysis. Authored by two world-renowned researchers, the book is aimed at graduates and researchers in applied mathematics, engineering and computer science and makes an ideal graduate text.




Mathematical Reviews


Book Description




Numerical Methods for General and Structured Eigenvalue Problems


Book Description

This book is about computing eigenvalues, eigenvectors, and invariant subspaces of matrices. Treatment includes generalized and structured eigenvalue problems and all vital aspects of eigenvalue computations. A unique feature is the detailed treatment of structured eigenvalue problems, providing insight on accuracy and efficiency gains to be expected from algorithms that take the structure of a matrix into account.




Perturbation Theory for Matrix Equations


Book Description

The book is devoted to the perturbation analysis of matrix equations. The importance of perturbation analysis is that it gives a way to estimate the influence of measurement and/or parametric errors in mathematical models together with the rounding errors done in the computational process. The perturbation bounds may further be incorporated in accuracy estimates for the solution computed in finite arithmetic. This is necessary for the development of reliable computational methods, algorithms and software from the viewpoint of modern numerical analysis.In this book a general perturbation theory for matrix algebraic equations is presented. Local and non-local perturbation bounds are derived for general types of matrix equations as well as for the most important equations arising in linear algebra and control theory. A large number of examples, tables and figures is included in order to illustrate the perturbation techniques and bounds.Key features:• The first book in this field • Can be used by a variety of specialists • Material is self-contained • Results can be used in the development of reliable computational algorithms • A large number of examples and graphical illustrations are given • Written by prominent specialists in the field




Differential-algebraic Equations


Book Description

Differential-algebraic equations are a widely accepted tool for the modeling and simulation of constrained dynamical systems in numerous applications, such as mechanical multibody systems, electrical circuit simulation, chemical engineering, control theory, fluid dynamics and many others. This is the first comprehensive textbook that provides a systematic and detailed analysis of initial and boundary value problems for differential-algebraic equations. The analysis is developed from the theory of linear constant coefficient systems via linear variable coefficient systems to general nonlinear systems. Further sections on control problems, generalized inverses of differential-algebraic operators, generalized solutions, and differential equations on manifolds complement the theoretical treatment of initial value problems. Two major classes of numerical methods for differential-algebraic equations (Runge-Kutta and BDF methods) are discussed and analyzed with respect to convergence and order. A chapter is devoted to index reduction methods that allow the numerical treatment of general differential-algebraic equations. The analysis and numerical solution of boundary value problems for differential-algebraic equations is presented, including multiple shooting and collocation methods. A survey of current software packages for differential-algebraic equations completes the text. The book is addressed to graduate students and researchers in mathematics, engineering and sciences, as well as practitioners in industry. A prerequisite is a standard course on the numerical solution of ordinary differential equations. Numerous examples and exercises make the book suitable as a course textbook or for self-study.




Max-linear Systems: Theory and Algorithms


Book Description

Recent years have seen a significant rise of interest in max-linear theory and techniques. Specialised international conferences and seminars or special sessions devoted to max-algebra have been organised. This book aims to provide a first detailed and self-contained account of linear-algebraic aspects of max-algebra for general (that is both irreducible and reducible) matrices. Among the main features of the book is the presentation of the fundamental max-algebraic theory (Chapters 1-4), often scattered in research articles, reports and theses, in one place in a comprehensive and unified form. This presentation is made with all proofs and in full generality (that is for both irreducible and reducible matrices). Another feature is the presence of advanced material (Chapters 5-10), most of which has not appeared in a book before and in many cases has not been published at all. Intended for a wide-ranging readership, this book will be useful for anyone with basic mathematical knowledge (including undergraduate students) who wish to learn fundamental max-algebraic ideas and techniques. It will also be useful for researchers working in tropical geometry or idempotent analysis.




Applied Numerical Linear Algebra


Book Description

This comprehensive textbook is designed for first-year graduate students from a variety of engineering and scientific disciplines.