Ekeland Variational Principle


Book Description




Techniques of Variational Analysis


Book Description

Borwein is an authority in the area of mathematical optimization, and his book makes an important contribution to variational analysis Provides a good introduction to the topic




Vector Optimization


Book Description

This book is devoted to vector or multiple criteria approaches in optimization. Topics covered include: vector optimization, vector variational inequalities, vector variational principles, vector minmax inequalities and vector equilibrium problems. In particular, problems with variable ordering relations and set-valued mappings are treated. The nonlinear scalarization method is extensively used throughout the book to deal with various vector-related problems. The results presented are original and should be interesting to researchers and graduates in applied mathematics and operations research. Readers will benefit from new methods and ideas for handling multiple criteria decision problems.




Variational Analysis


Book Description

From its origins in the minimization of integral functionals, the notion of variations has evolved greatly in connection with applications in optimization, equilibrium, and control. This book develops a unified framework and provides a detailed exposition of variational geometry and subdifferential calculus in their current forms beyond classical and convex analysis. Also covered are set-convergence, set-valued mappings, epi-convergence, duality, and normal integrands.




Applied Nonlinear Analysis


Book Description

Nonlinear analysis, formerly a subsidiary of linear analysis, has advanced as an individual discipline, with its own methods and applications. Moreover, students can now approach this highly active field without the preliminaries of linear analysis. As this text demonstrates, the concepts of nonlinear analysis are simple, their proofs direct, and their applications clear. No prerequisites are necessary beyond the elementary theory of Hilbert spaces; indeed, many of the most interesting results lie in Euclidean spaces. In order to remain at an introductory level, this volume refrains from delving into technical difficulties and sophisticated results not in current use. Applications are explained as soon as possible, and theoretical aspects are geared toward practical use. Topics range from very smooth functions to nonsmooth ones, from convex variational problems to nonconvex ones, and from economics to mechanics. Background notes, comments, bibliography, and indexes supplement the text.







Recent Advances in Modeling, Analysis and Systems Control: Theoretical Aspects and Applications


Book Description

This book describes recent developments in a wide range of areas, including the modeling, analysis and control of dynamical systems, and explores related applications. The book provided a forum where researchers have shared their ideas, results on theory, and experiments in application problems. The current literature devoted to dynamical systems is quite large, and the authors’ choice for the considered topics was motivated by the following considerations. Firstly, the mathematical jargon for systems theory remains quite complex and the authors feel strongly that they have to maintain connections between the people of this research field. Secondly, dynamical systems cover a wider range of applications, including engineering, life sciences and environment. The authors consider that the book is an important contribution to the state of the art in the fuzzy and dynamical systems areas.




Infinite-Dimensional Optimization and Convexity


Book Description

The caratheodory approach; Infinite-dimensional optimization; Duality theory.




Methods in Nonlinear Analysis


Book Description

This book offers a systematic presentation of up-to-date material scattered throughout the literature from the methodology point of view. It reviews the basic theories and methods, with many interesting problems in partial and ordinary differential equations, differential geometry and mathematical physics as applications, and provides the necessary preparation for almost all important aspects in contemporary studies. All methods are illustrated by carefully chosen examples from mechanics, physics, engineering and geometry.




Topics in Fixed Point Theory


Book Description

The purpose of this contributed volume is to provide a primary resource for anyone interested in fixed point theory with a metric flavor. The book presents information for those wishing to find results that might apply to their own work and for those wishing to obtain a deeper understanding of the theory. The book should be of interest to a wide range of researchers in mathematical analysis as well as to those whose primary interest is the study of fixed point theory and the underlying spaces. The level of exposition is directed to a wide audience, including students and established researchers. Key topics covered include Banach contraction theorem, hyperconvex metric spaces, modular function spaces, fixed point theory in ordered sets, topological fixed point theory for set-valued maps, coincidence theorems, Lefschetz and Nielsen theories, systems of nonlinear inequalities, iterative methods for fixed point problems, and the Ekeland’s variational principle.