Elasticity and Plasticity of Large Deformations


Book Description

This book presents an introduction to material theory and, in particular, to elasticity, plasticity and viscoelasticity, to bring the reader close to the frontiers of today’s knowledge in these particular fields. It starts right from the beginning without assuming much knowledge of the subject. Hence, the book is generally comprehensible to all engineers, physicists, mathematicians, and others. At the beginning of each new section, a brief Comment on the Literature contains recommendations for further reading. This book includes an updated reference list and over 100 changes throughout the book. It contains the latest knowledge on the subject. Two new chapters have been added in this new edition. Now finite viscoelasticity is included, and an Essay on gradient materials, which have recently drawn much attention.




Elasticity and Plasticity of Large Deformations


Book Description

This careful and detailed introduction to non-linear continuum mechanics and to elasticity and platicity, with a unique mathematical foundation, starts right from the basics. The general theory of mechanical behaviour is particularized for the broad and important classes of elasticity and plasticity. Brings the reader to the forefront of today's knowledge. A list of notations and an index help the reader finding specific topics.




Elasticity and Plasticity of Large Deformations


Book Description

This careful and detailed introduction to non-linear continuum mechanics and to elasticity and platicity, with a unique mathematical foundation, starts right from the basics. The general theory of mechanical behaviour is particularized for the broad and important classes of elasticity and plasticity. Brings the reader to the forefront of today's knowledge. A list of notations and an index help the reader finding specific topics.




Elasticity and Plasticity of Large Deformations


Book Description

This book presents an introduction to material theory and, in particular, to elasticity, plasticity and viscoelasticity, to bring the reader close to the frontiers of today’s knowledge in these particular fields. It starts right from the beginning without assuming much knowledge of the subject. Hence, the book is generally comprehensible to all engineers, physicists, mathematicians, and others. At the beginning of each new section, a brief Comment on the Literature contains recommendations for further reading. This book includes an updated reference list and over 100 changes throughout the book. It contains the latest knowledge on the subject. Two new chapters have been added in this new edition. Now finite viscoelasticity is included, and an Essay on gradient materials, which have recently drawn much attention.




Elastoplasticity Theory


Book Description

Understanding the elastoplastic deformation of metals and geomaterials, including the constitutive description of the materials and analysis of structure undergoing plastic deformation, is an essential part of the background required by mechanical, civil, and geotechnical engineers as well as materials scientists. However, most books address the su




THEORY OF ELASTICITY AND PLASTICITY


Book Description

Theory of Elasticity and Plasticity is designed as a textbook for both undergraduate and postgraduate students of engineering in civil, mechanical and aeronautical disciplines. This book has been written with the objective of bringing the concepts of elasticity and plasticity to the students in a simplified and comprehensive manner. The basic concepts, definitions, theory as well as practical applications are discussed in a clear, logical and concise manner for better understanding. Starting with, general relationships between stress, strain and deformations, the book deals with specific problems on plane stress, plane strain and torsion in non-circular sections. Advanced topics such as membrane analogy, beams on elastic foundations and plastic analysis of pressure vessels are also discussed elaborately. For better comprehension, the text is well supported with:  Large number of worked-out examples in each chapter.  Well-labelled illustrations.  Numerous Review Questions that reinforce the understanding of the subject. As all the concepts are covered extensively with a blend of theory and practice, this book will be a useful resource to the students.




Applied Mechanics of Solids


Book Description

Modern computer simulations make stress analysis easy. As they continue to replace classical mathematical methods of analysis, these software programs require users to have a solid understanding of the fundamental principles on which they are based.Develop Intuitive Ability to Identify and Avoid Physically Meaningless PredictionsApplied Mechanics o




A Primer in Elasticity


Book Description

I want to thank R. L. Fosdick, M. E. Gurtin and W. O. Williams for their detailed criticism of the manuscript. I also thank F. Davi, M. Lembo, P. Nardinocchi and M. Vianello for valuable remarks prompted by their reading of one or another of the many previous drafts, from 1988 to date. Since it has taken me so long to bring this writing to its present form, many other colleagues and students have episodically offered useful comments and caught mistakes: a list would risk to be incomplete, but I am heartily grateful to them all. Finally, I thank V. Nicotra for skillfully transforming my hand sketches into book-quality figures. P. PODIO-GUIDUGLI Roma, April 2000 Journal of Elasticity 58: 1-104,2000. 1 P. Podio-Guidugli, A Primer in Elasticity. © 2000 Kluwer Academic Publishers. CHAPTER I Strain 1. Deformation. Displacement Let 8 be a 3-dimensional Euclidean space, and let V be the vector space associated with 8. We distinguish a point p E 8 both from its position vector p(p):= (p-o) E V with respect to a chosen origin 0 E 8 and from any triplet (~1, ~2, ~3) E R3 of coordinates that we may use to label p. Moreover, we endow V with the usual inner product structure, and orient it in one of the two possible manners. It then makes sense to consider the inner product a .




Crystal Plasticity Finite Element Methods


Book Description

Written by the leading experts in computational materials science, this handy reference concisely reviews the most important aspects of plasticity modeling: constitutive laws, phase transformations, texture methods, continuum approaches and damage mechanisms. As a result, it provides the knowledge needed to avoid failures in critical systems udner mechanical load. With its various application examples to micro- and macrostructure mechanics, this is an invaluable resource for mechanical engineers as well as for researchers wanting to improve on this method and extend its outreach.




Plasticity Theory


Book Description

The aim of Plasticity Theory is to provide a comprehensive introduction to the contemporary state of knowledge in basic plasticity theory and to its applications. It treats several areas not commonly found between the covers of a single book: the physics of plasticity, constitutive theory, dynamic plasticity, large-deformation plasticity, and numerical methods, in addition to a representative survey of problems treated by classical methods, such as elastic-plastic problems, plane plastic flow, and limit analysis; the problem discussed come from areas of interest to mechanical, structural, and geotechnical engineers, metallurgists and others. The necessary mathematics and basic mechanics and thermodynamics are covered in an introductory chapter, making the book a self-contained text suitable for advanced undergraduates and graduate students, as well as a reference for practitioners of solid mechanics.