Elastomeric Proteins


Book Description

This book was originally published in 2002. Elastic proteins occur in a wide range of biological systems where they have evolved to fulfil precise biological roles. The best known include proteins in vertebrate muscles and connective tissues, such as titin, elastin and fibrillin, and spider silks. However, other examples include byssus and abductin from bivalve molluscs, resilin from arthropods and gluten from wheat. Interest in elastomeric proteins has been high for several reasons. Firstly, their biological and medical significance, particularly in human disease. Secondly, the unusual properties of proteins such as spider silks provide opportunities to develop materials. Thirdly, the development of scanning probe microscopy makes it possible to study structures and biomechanical properties of these proteins at the single molecule level. This book will be of value to anyone with an interest in the various aspects of elastomeric proteins.




Elastomeric Proteins


Book Description




Biomimetic Protein Based Elastomers


Book Description

Elastomeric proteins are ubiquitous in nature, where they have evolved precise structures and properties that are necessary to perform specific biological roles and functions. This book emphasizes the impact of amino acid sequence on modulating protein structure, properties, and function. Examples include conformational ensemble dynamics, environmental responsiveness, self-assembly, physico-mechanical properties, morphology, and properties tailored for biomedical applications. This foundational framework is not only critical to advance scientific understanding and knowledge on elastomeric proteins but also enables the conceptualization, rational design, and development of biosynthetic elastomers and their analogous polypeptides for a variety of applications. Edited and contributed by pioneering researchers in the field, the book provides a timely overview of the materials, along with the synthesis techniques, the unique characteristics of elastomeric proteins, and biomedical and industrial applications. The book will provide a reference for graduate students and researchers interested in designing biomimetic proteins tailored for various functions.




Fuzziness


Book Description

Detailed characterization of fuzzy interactions will be of central importance for understanding the diverse biological functions of intrinsically disordered proteins in complex eukaryotic signaling networks. In this volume, Peter Tompa and Monika Fuxreiter have assembled a series of papers that address the issue of fuzziness in molecular interactions. These papers provide a broad overview of the phenomenon of fuzziness and provide compelling examples of the central role played by fuzzy interactions in regulation of cellular signaling processes and in viral infectivity. These contributions summarize the current state of knowledge in this new field and will undoubtedly stimulate future research that will further advance our understanding of fuzziness and its role in biomolecular interactions.




Current Topics in Elastomers Research


Book Description

From weather-proof tires and artificial hearts to the o-rings and valve seals that enable successful space exploration, rubber is an indispensable component of modern civilization. Stiff competition and stringent application requirements foster continuous challenges requiring manufacturers to fund ever-expanding research projects. However, this vas




Comprehensive Nanoscience and Technology


Book Description

From the Introduction: Nanotechnology and its underpinning sciences are progressing with unprecedented rapidity. With technical advances in a variety of nanoscale fabrication and manipulation technologies, the whole topical area is maturing into a vibrant field that is generating new scientific research and a burgeoning range of commercial applications, with an annual market already at the trillion dollar threshold. The means of fabricating and controlling matter on the nanoscale afford striking and unprecedented opportunities to exploit a variety of exotic phenomena such as quantum, nanophotonic and nanoelectromechanical effects. Moreover, researchers are elucidating new perspectives on the electronic and optical properties of matter because of the way that nanoscale materials bridge the disparate theories describing molecules and bulk matter. Surface phenomena also gain a greatly increased significance; even the well-known link between chemical reactivity and surface-to-volume ratio becomes a major determinant of physical properties, when it operates over nanoscale dimensions. Against this background, this comprehensive work is designed to address the need for a dynamic, authoritative and readily accessible source of information, capturing the full breadth of the subject. Its six volumes, covering a broad spectrum of disciplines including material sciences, chemistry, physics and life sciences, have been written and edited by an outstanding team of international experts. Addressing an extensive, cross-disciplinary audience, each chapter aims to cover key developments in a scholarly, readable and critical style, providing an indispensible first point of entry to the literature for scientists and technologists from interdisciplinary fields. The work focuses on the major classes of nanomaterials in terms of their synthesis, structure and applications, reviewing nanomaterials and their respective technologies in well-structured and comprehensive articles with extensive cross-references. It has been a constant surprise and delight to have found, amongst the rapidly escalating number who work in nanoscience and technology, so many highly esteemed authors willing to contribute. Sharing our anticipation of a major addition to the literature, they have also captured the excitement of the field itself in each carefully crafted chapter. Along with our painstaking and meticulous volume editors, full credit for the success of this enterprise must go to these individuals, together with our thanks for (largely) adhering to the given deadlines. Lastly, we record our sincere thanks and appreciation for the skills and professionalism of the numerous Elsevier staff who have been involved in this project, notably Fiona Geraghty, Megan Palmer and Greg Harris, and especially Donna De Weerd-Wilson who has steered it through from its inception. We have greatly enjoyed working with them all, as we have with each other.




Advances in Nanotechnology Research and Application: 2011 Edition


Book Description

Advances in Nanotechnology Research and Application: 2011 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Nanotechnology. The editors have built Advances in Nanotechnology Research and Application: 2011 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Nanotechnology in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Advances in Nanotechnology Research and Application: 2011 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.




Fundamentals of Multiscale Modeling of Structural Materials


Book Description

Fundamentals of Multiscale Modeling of Structural Materials provides a robust introduction to the computational tools, underlying theory, practical applications, and governing physical phenomena necessary to simulate and understand a wide-range of structural materials at multiple time and length scales. The book offers practical guidelines for modeling common structural materials with well-established techniques, outlining detailed modeling approaches for calculating and analyzing mechanical, thermal and transport properties of various structural materials such as metals, cement/concrete, polymers, composites, wood, thin films, and more.Computational approaches based on artificial intelligence and machine learning methods as complementary tools to the physics-based multiscale techniques are discussed as are modeling techniques for additively manufactured structural materials. Special attention is paid to how these methods can be used to develop the next generation of sustainable, resilient and environmentally-friendly structural materials, with a specific emphasis on bridging the atomistic and continuum modeling scales for these materials. - Synthesizes the latest cutting-edge computational multiscale modeling techniques for an array of structural materials - Emphasizes the foundations of the field and offers practical guidelines for modeling material systems with well-established techniques - Covers methods for calculating and analyzing mechanical, thermal and transport properties of various structural materials such as metals, cement/concrete, polymers, composites, wood, and more - Highlights underlying theory, emerging areas, future directions and various applications of the modeling methods covered - Discusses the integration of multiscale modeling and artificial intelligence




Advances in Elastomers II


Book Description

This is the second volume of a two-volume work which summarizes in an edited format and in a fairly comprehensive manner many of the recent technical research accomplishments in the area of Elastomers. “Advances in Elastomers” discusses the various attempts reported on solving these problems from the point of view of the chemistry and the structure of elastomers, highlighting the drawbacks and advantages of each method. It summarize the importance of elastomers and their multiphase systems in human life and industry, and covers all the topics related to recent advances in elastomers, their blends, IPNs, composites and nanocomposites. This second volume is deals with composites and nanocomposites of elastomers.




Peptide-Based Materials


Book Description

Synthesis of Polypeptides by Ring-Opening Polymerization of α-Amino Acid N-Carboxyanhydrides, by Jianjun Cheng and Timothy J. Deming.- Peptide Synthesis and Self-Assembly, by S. Maude, L. R. Tai, R. P. W. Davies, B. Liu, S. A. Harris, P. J. Kocienski and A. Aggeli.- Elastomeric Polypeptides, by Mark B. van Eldijk, Christopher L. McGann, Kristi L. Kiick andJan C. M. van Hest.- Self-Assembled Polypeptide and Polypeptide Hybrid Vesicles: From Synthesis to Application, by Uh-Joo Choe, Victor Z. Sun, James-Kevin Y. Tan and Daniel T. Kamei.- Peptide-Based and Polypeptide-Based Hydrogels for Drug Delivery and Tissue Engineering, by Aysegul Altunbas and Darrin J. Pochan.-