Electric Power Generation, Transmission, and Distribution


Book Description

Featuring contributions from worldwide leaders in the field, the carefully crafted Electric Power Generation, Transmission, and Distribution, Third Edition (part of the five-volume set, The Electric Power Engineering Handbook) provides convenient access to detailed information on a diverse array of power engineering topics. Updates to nearly every chapter keep this book at the forefront of developments in modern power systems, reflecting international standards, practices, and technologies. Topics covered include: Electric power generation: nonconventional methods Electric power generation: conventional methods Transmission system Distribution systems Electric power utilization Power quality L.L. Grigsby, a respected and accomplished authority in power engineering, and section editors Saifur Rahman, Rama Ramakumar, George Karady, Bill Kersting, Andrew Hanson, and Mark Halpin present substantially new and revised material, giving readers up-to-date information on core areas. These include advanced energy technologies, distributed utilities, load characterization and modeling, and power quality issues such as power system harmonics, voltage sags, and power quality monitoring. With six new and 16 fully revised chapters, the book supplies a high level of detail and, more importantly, a tutorial style of writing and use of photographs and graphics to help the reader understand the material. New chapters cover: Water Transmission Line Reliability Methods High Voltage Direct Current Transmission System Advanced Technology High-Temperature Conduction Distribution Short-Circuit Protection Linear Electric Motors A volume in the Electric Power Engineering Handbook, Third Edition. Other volumes in the set: K12648 Power Systems, Third Edition (ISBN: 9781439856338) K13917 Power System Stability and Control, Third Edition (ISBN: 9781439883204) K12650 Electric Power Substations Engineering, Third Edition (ISBN: 9781439856383) K12643 Electric Power Transformer Engineering, Third Edition (ISBN: 9781439856291)




ELECTRIC POWER GENERATION


Book Description

This accessible text, now in its Second Edition, continues to provide a comprehensive coverage of electric power generation, transmission and distribution, including the operation and management of different systems in these areas. It gives an overview of the basic principles of electrical engineering and load characteristics and provides exhaustive system-level description of several power plants, such as thermal, electric, nuclear and gas power plants. The book fully explores the basic theory and also covers emerging concepts and technologies. The conventional topics of transmission subsystem including HVDC transmission are also discussed, along with an introduction to new technologies in power transmission and control such as Flexible AC Transmission Systems (FACTS). Numerous solved examples, inter-spersed throughout, illustrate the concepts discussed. What is New to This Edition : Provides two new chapters on Diesel Engine Power Plants and Power System Restructuring to make the students aware of the changes taking place in the power system industry. Includes more solved and unsolved problems in each chapter to enhance the problem solving skills of the students. Primarily designed as a text for the undergraduate students of electrical engineering, the book should also be of great value to power system engineers.




Electric Energy


Book Description

The search for renewable energy and smart grids, the societal impact of blackouts, and the environmental impact of generating electricity, along with the new ABET criteria, continue to drive a renewed interest in electric energy as a core subject. Keeping pace with these changes, Electric Energy: An Introduction, Third Edition restructures the traditional introductory electric energy course to better meet the needs of electrical and mechanical engineering students. Now in color, this third edition of a bestselling textbook gives students a wider view of electric energy, without sacrificing depth. Coverage includes energy resources, renewable energy, power plants and their environmental impacts, electric safety, power quality, power market, blackouts, and future power systems. The book also makes the traditional topics of electromechanical conversion, transformers, power electronics, and three-phase systems more relevant to students. Throughout, it emphasizes issues that engineers encounter in their daily work, with numerous examples drawn from real systems and real data. What’s New in This Edition Color illustrations Substation and distribution equipment Updated data on energy resources Expanded coverage of power plants Expanded material on renewable energy Expanded material on electric safety Three-phase system and pulse width modulation for DC/AC converters Induction generator More information on smart grids Additional problems and solutions Combining the fundamentals of traditional energy conversion with contemporary topics in electric energy, this accessible textbook gives students the broad background they need to meet future challenges.




Electrical Power Transmission System Engineering


Book Description

Although many textbooks deal with a broad range of topics in the power system area of electrical engineering, few are written specifically for an in-depth study of modern electric power transmission. Drawing from the author’s 31 years of teaching and power industry experience, in the U.S. and abroad, Electrical Power Transmission System Engineering: Analysis and Design, Second Edition provides a wide-ranging exploration of modern power transmission engineering. This self-contained text includes ample numerical examples and problems, and makes a special effort to familiarize readers with vocabulary and symbols used in the industry. Provides essential impedance tables and templates for placing and locating structures Divided into two sections—electrical and mechanical design and analysis—this book covers a broad spectrum of topics. These range from transmission system planning and in-depth analysis of balanced and unbalanced faults, to construction of overhead lines and factors affecting transmission line route selection. The text includes three new chapters and numerous additional sections dealing with new topics, and it also reviews methods for allocating transmission line fixed charges among joint users. Uniquely comprehensive, and written as a self-tutorial for practicing engineers or students, this book covers electrical and mechanical design with equal detail. It supplies everything required for a solid understanding of transmission system engineering.




Electric Power Transmission and Distribution


Book Description

Electric Power Transmission and Distribution is a comprehensive text, designed for undergraduate courses in power systems and transmission and distribution. A part of the electrical engineering curriculum, this book is designed to meet the requirements of students taking elementary courses in electric power transmission and distribution. Written in a simple, easy-to-understand manner, this book introduces the reader to electrical, mechanical and economic aspects of the design and construction of electric power transmission and distribution systems.




The Electric Power Engineering Handbook


Book Description

The astounding technological developments of our age depend on a safe, reliable, and economical supply of electric power. It stands central to continued innovations and particularly to the future of developing countries. Therefore, the importance of electric power engineering cannot be overstated, nor can the importance of this handbook to the power engineer. Until now, however, power engineers have had no comprehensive reference to help answer their questions quickly, concisely, and authoritatively-A one-stop reference written by electric power engineers specifically for electric power engineers.




Transmission and Distribution Electrical Engineering


Book Description

Chapter 1: System Studies -- Chapter 2: Drawings and Diagrams -- Chapter 3: Substation Layouts -- Chapter 4: Substation Auxiliary Power Supplies -- Chapter 5: Current and Voltage Transformers -- Chapter 6: Insulators -- Chapter 7: Substation Building Services -- Chapter 8: Earthing and Bonding -- Chapter 9: Insulation Co-ordination -- Chapter 10: Relay Protection -- Chapter 11: Fuses and Miniature Circuit Breakers -- Chapter 12: Cables -- Chapter 13: Switchgear -- Chapter 14: Power Transformers -- Chapter 15: Substation and Overhead Line Foundations -- Chapter 16: Overhead Line Routing -- Chapter 17: Structures, Towers and Poles -- Chapter 18: Overhead Line Conductor and Technical Specifications -- Chapter 19: Testing and Commissioning -- Chapter 20: Electromagnetic Compatibility -- Chapter 21: Supervisory Control and Data Acquisition -- Chapter 22: Project Management -- Chapter 23: Distribution Planning -- Chapter 24: Power Quality- Harmonics in Power Systems -- Chapter 25: Power Qual ...




Electric Power Transformer Engineering


Book Description

Covering the fundamental theory of electric power transformers, this book provides the background required to understand the basic operation of electromagnetic induction as applied to transformers. The book is divided into three fundamental groupings: one stand-alone chapter is devoted to Theory and Principles, nine chapters individually treat majo




Electric Power Principles


Book Description

This innovative approach to the fundamentals of electric power provides the most rigorous, comprehensive and modern treatment available. To impart a thorough grounding in electric power systems, it begins with an informative discussion on per-unit normalizations, symmetrical components and iterative load flow calculations. Covering important topics within the power system, such as protection and DC transmission, this book looks at both traditional power plants and those used for extracting sustainable energy from wind and sunlight. With classroom-tested material, this book also presents: the principles of electromechanical energy conversion and magnetic circuits; synchronous machines - the most important generators of electric power; power electronics; induction and direct current electric motors. Homework problems with varying levels of difficulty are included at the end of each chapter, and an online solutions manual for tutors is available. A useful Appendix contains a review of elementary network theory. For senior undergraduate and postgraduate students studying advanced electric power systems as well as engineers re-training in this area, this textbook will be an indispensable resource. It will also benefit engineers in electronic power systems, power electronic systems, electric motors and generators, robotics and mechatronics. www.wiley.com/go/kirtley_electric




Electric Power System Basics for the Nonelectrical Professional


Book Description

The second edition of Steven W. Blume’s bestseller provides a comprehensive treatment of power technology for the non-electrical engineer working in the electric power industry This book aims to give non-electrical professionals a fundamental understanding of large interconnected electrical power systems, better known as the “Power Grid”, with regard to terminology, electrical concepts, design considerations, construction practices, industry standards, control room operations for both normal and emergency conditions, maintenance, consumption, telecommunications and safety. The text begins with an overview of the terminology and basic electrical concepts commonly used in the industry then it examines the generation, transmission and distribution of power. Other topics discussed include energy management, conservation of electrical energy, consumption characteristics and regulatory aspects to help readers understand modern electric power systems. This second edition features: New sections on renewable energy, regulatory changes, new measures to improve system reliability, and smart technologies used in the power grid system Updated practical examples, photographs, drawing, and illustrations to help the reader gain a better understanding of the material “Optional supplementary reading” sections within most chapters to elaborate on certain concepts by providing additional detail or background Electric Power System Basics for the Nonelectrical Professional, Second Edition, gives business professionals in the industry and entry-level engineers a strong introduction to power technology in non-technical terms. Steve W. Blume is Founder of Applied Professional Training, Inc., APT Global, LLC, APT College, LLC and APT Corporate Training Services, LLC, USA. Steve is a registered professional engineer and certified NERC Reliability Coordinator with a Master's degree in Electrical Engineering specializing in power and a Bachelor's degree specializing in Telecommunications. He has more than 25 years’ experience teaching electric power system basics to non-electrical professionals. Steve's engineering and operations experience includes generation, transmission, distribution, and electrical safety. He is an active senior member in IEEE and has published two books in power systems through IEEE and Wiley.