Electric Probes in Stationary and Flowing Plasmas


Book Description

The electric probe has long been used as a fundamental diagnostic tool for measuring the local properties of a plasma. Since Langmuir first developed the electric-probe technique in 1924, probes have been used to measure electron densities and temperatures in a wide variety of gaseous ionized media, such as electric discharges, afterglows, ionizing shock waves, flames, MHD, and plasma-jet flows, reentry vehicle flow fields, and atmospheric and space plasmas. The first systematic account of modern theories of electriC-probe behavior was given by Chen (1965), who also provided practical information on experimental techniques. A subsequent survey by Swift and Schwar (1970), which was representative of results contained in the literature through 1969, included additional information on some of the modern theories and on practical details of probe utilization. The purpose of this volume is to supplement the previously mentioned two works by providing an account of a large body of the up-to-date informa tion available on electric probes, particularly in the areas of transitional and continuum-flow phenomena, and by offering, for all domains of probe appli cation, a critical appraisal of the more significant probe theories and experi mental investigations in the literature.







Technical Books & Monographs


Book Description







High Temperature Gas Dynamics


Book Description

High Temperature Gas Dynamics is a primer for scientists, engineers, and students who would like to have a basic understanding of the physics and the behavior of high-temperature gases. It is a valuable tool for astrophysicists as well. The first chapters treat the basic principles of quantum and statistical mechanics and how to derive thermophysical properties from them. Special topics are included that are rarely found in other textbooks, such as the thermophysical and transport properties of multi-temperature gases and a novel method to compute radiative transfer. Furthermore, collision processes between different particles are discussed. Separate chapters deal with the production of high-temperature gases and with electrical emission in plasmas, as well as related diagnostic techniques. This new edition adds over 100 pages and includes the following updates: several sections on radiative properties of high temperature gases and various radiation models, a section on shocks in magneto-gas-dynamics, a section on stability of 2D ionized gas flow, and additional practical examples, such as MGD generators, Hall and ion thrusters, and Faraday generators.







Plasma-Surface Interactions and Processing of Materials


Book Description

An understanding of the processes involved in the basic and applied physics and chemistry of the interaction of plasmas with materials is vital to the evolution of technologies such as those relevant to microelectronics, fusion and space. The subjects dealt with in the book include: the physics and chemistry of plasmas, plasma diagnostics, physical sputtering and chemical etching, plasma assisted deposition of thin films, ion and electron bombardment, and plasma processing of inorganic and polymeric materials. The book represents a concentration of a substantial amount of knowledge acquired in this area - knowledge which was hitherto widely scattered throughout the literature - and thus establishes a baseline reference work for both established and tyro research workers.