Electric Systems, Dynamics, and Stability with Artificial Intelligence Applications


Book Description

This work seeks to provide a solid foundation to the principles and practices of dynamics and stability assessment of large-scale power systems, focusing on the use of interconnected systems - and aiming to meet the requirements of today's competitive and deregulated environments. It contains easy-to-follow examples of fundamental concepts and algorithmic procedures.




Modern Power Systems Analysis


Book Description

The capability of effectively analyzing complex systems is fundamental to the operation, management and planning of power systems. This book offers broad coverage of essential power system concepts and features a complete and in-depth account of all the latest developments, including Power Flow Analysis in Market Environment; Power Flow Calculation of AC/DC Interconnected Systems and Power Flow Control and Calculation for Systems Having FACTS Devices and recent results in system stability.




Electric Power System Applications of Optimization


Book Description

As the demand for energy continues to grow, optimization has risen to the forefront of power engineering research and development. Continuing in the bestselling tradition of the first edition, Electric Power System Applications of Optimization, Second Edition presents the theoretical background of optimization from a practical power system point of view, exploring advanced techniques, new directions, and continuous application problems. The book provides both the analytical formulation of optimization and various algorithmic issues that arise in the application of various methods in power system planning and operation. The second edition adds new functions involving market programs, pricing, reliability, and advances in intelligent systems with implemented algorithms and illustrative examples. It describes recent developments in the field of Adaptive Critics Design and practical applications of approximate dynamic programming. To round out the coverage, the final chapter combines fundamental theories and theorems from functional optimization, optimal control, and dynamic programming to explain new Adaptive Dynamic Programming concepts and variants. With its one-of-a-kind integration of cornerstone optimization principles with application examples, this second edition propels power engineers to new discoveries in providing optimal supplies of energy.




Artificial Intelligence Applications in Electrical Transmission and Distribution Systems Protection


Book Description

Artificial intelligence (AI) can successfully help in solving real-world problems in power transmission and distribution systems because AI-based schemes are fast, adaptive, and robust and are applicable without any knowledge of the system parameters. This book considers the application of AI methods for the protection of different types and topologies of transmission and distribution lines. It explains the latest pattern-recognition-based methods as applicable to detection, classification, and location of a fault in the transmission and distribution lines, and to manage smart power systems including all the pertinent aspects. FEATURES Provides essential insight on uses of different AI techniques for pattern recognition, classification, prediction, and estimation, exclusive to power system protection issues Presents an introduction to enhanced electricity system analysis using decision-making tools Covers AI applications in different protective relaying functions Discusses issues and challenges in the protection of transmission and distribution systems Includes a dedicated chapter on case studies and applications This book is aimed at graduate students, researchers, and professionals in electrical power system protection, stability, and smart grids.




Power System Dynamics and Stability


Book Description

Classic power system dynamics text now with phasor measurement and simulation toolbox This new edition addresses the needs of dynamic modeling and simulation relevant to power system planning, design, and operation, including a systematic derivation of synchronous machine dynamic models together with speed and voltage control subsystems. Reduced-order modeling based on integral manifolds is used as a firm basis for understanding the derivations and limitations of lower-order dynamic models. Following these developments, multi-machine model interconnected through the transmission network is formulated and simulated using numerical simulation methods. Energy function methods are discussed for direct evaluation of stability. Small-signal analysis is used for determining the electromechanical modes and mode-shapes, and for power system stabilizer design. Time-synchronized high-sampling-rate phasor measurement units (PMUs) to monitor power system disturbances have been implemented throughout North America and many other countries. In this second edition, new chapters on synchrophasor measurement and using the Power System Toolbox for dynamic simulation have been added. These new materials will reinforce power system dynamic aspects treated more analytically in the earlier chapters. Key features: Systematic derivation of synchronous machine dynamic models and simplification. Energy function methods with an emphasis on the potential energy boundary surface and the controlling unstable equilibrium point approaches. Phasor computation and synchrophasor data applications. Book companion website for instructors featuring solutions and PowerPoint files. Website for students featuring MATLABTM files. Power System Dynamics and Stability, 2nd Edition, with Synchrophasor Measurement and Power System Toolbox combines theoretical as well as practical information for use as a text for formal instruction or for reference by working engineers.




Handbook of Learning and Approximate Dynamic Programming


Book Description

A complete resource to Approximate Dynamic Programming (ADP), including on-line simulation code Provides a tutorial that readers can use to start implementing the learning algorithms provided in the book Includes ideas, directions, and recent results on current research issues and addresses applications where ADP has been successfully implemented The contributors are leading researchers in the field




Adaptive Stochastic Optimization Techniques with Applications


Book Description

Adaptive Stochastic Optimization Techniques with Applications provides a single, convenient source for state-of-the-art information on optimization techniques used to solve problems with adaptive, dynamic, and stochastic features. Presenting modern advances in static and dynamic optimization, decision analysis, intelligent systems, evolutionary pro




Control and Automation of Electrical Power Distribution Systems


Book Description

Implementing the automation of electric distribution networks, from simple remote control to the application of software-based decision tools, requires many considerations, such as assessing costs, selecting the control infrastructure type and automation level, deciding on the ambition level, and justifying the solution through a business case. Control and Automation of Electric Power Distribution Systems addresses all of these issues to aid you in resolving automation problems and improving the management of your distribution network. Bringing together automation concepts as they apply to utility distribution systems, this volume presents the theoretical and practical details of a control and automation solution for the entire distribution system of substations and feeders. The fundamentals of this solution include depth of control, boundaries of control responsibility, stages of automation, automation intensity levels, and automated device preparedness. To meet specific performance goals, the authors discuss distribution planning, performance calculations, and protection to facilitate the selection of the primary device, associated secondary control, and fault indicators. The book also provides two case studies that illustrate the business case for distribution automation (DA) and methods for calculating benefits, including the assessment of crew time savings. As utilities strive for better economies, DA, along with other tools described in this volume, help to achieve improved management of the distribution network. Using Control and Automation of Electric Power Distribution Systems, you can embark on the automation solution best suited for your needs.




Vehicular Electric Power Systems


Book Description

Vehicular Electric Power Systems: Land, Sea, Air, and Space Vehicles acquaints professionals with trends and challenges in the development of more electric vehicles (MEVs) using detailed examples and comprehensive discussions of advanced MEV power system architectures, characteristics, and dynamics. The authors focus on real-world applications and highlight issues related to system stability as well as challenges faced during and after implementation. Probes innovations in the development of more electric vehicles for improved maintenance, support, endurance, safety, and cost-efficiency in automotive, aerospace, and marine vehicle engineering Heralding a new wave of advances in power system technology, Vehicular Electric Power Systems discusses: Different automotive power systems including conventional automobiles, more electric cars, heavy-duty vehicles, and electric and hybrid electric vehicles Electric and hybrid electric propulsion systems and control strategies Aerospace power systems including conventional and advanced aircraft, spacecraft, and the international space station Sea and undersea vehicles The modeling, real-time state estimation, and stability assessment of vehicular power systems Applications of fuel cells in various land, sea, air, and space vehicles Modeling techniques for energy storage devices including batteries, fuel cells, photovoltaic cells, and ultracapacitors Advanced power electronic converters and electric motor drives for vehicular applications Guidelines for the proper design of DC and AC distribution architectures




Artificial Intelligence Techniques in Power Systems Operations and Analysis


Book Description

An electrical power system consists of a large number of generation, transmission, and distribution subsystems. It is a very large and complex system; hence, its installation and management are very difficult tasks. An electrical system is essentially a very large network with very large data sets. Handling these data sets can require much time to analyze and subsequently implement. An electrical system is necessary but also potentially very dangerous if not operated and controlled properly. The demand for electricity is ever increasing, so maintaining load demand without overloading the system poses challenges and difficulties. Thus, planning, installing, operating, and controlling such a large system requires new technology. Artificial intelligence (AI) applications have many key features that can support a power system and handle overall power system operations. AI-based applications can manage the large data sets related to a power system. They can also help design power plants, model installation layouts, optimize load dispatch, and quickly respond to control apparatus. These applications and their techniques have been successful in many areas of power system engineering. Artificial Intelligence Techniques in Power Systems Operations and Analysis focuses on the various challenges arising in power systems and how AI techniques help to overcome these challenges. It examines important areas of power system analysis and the implementation of AI-driven analysis techniques. The book helps academicians and researchers understand how AI can be used for more efficient operation. Multiple AI techniques and their application are explained. Also featured are relevant data sets and case studies. Highlights include: Power quality enhancement by PV-UPQC for non-linear load Energy management of a nanogrid through flair of deep learning from IoT environments Role of artificial intelligence and machine learning in power systems with fault detection and diagnosis AC power optimization techniques Artificial intelligence and machine learning techniques in power systems automation