Electronic Properties of Materials


Book Description

The present book on electrical, optical, magnetic and thermal properties of materials is in many aspects different from other introductory texts in solid state physics. First of all, this book is written for engineers, particularly materials and electrical engineers who want to gain a fundamental under standing of semiconductor devices, magnetic materials, lasers, alloys, etc. Second, it stresses concepts rather than mathematical formalism, which should make the presentation relatively easy to understand. Thus, this book provides a thorough preparation for advanced texts, monographs, or special ized journal articles. Third, this book is not an encyclopedia. The selection oftopics is restricted to material which is considered to be essential and which can be covered in a 15-week semester course. For those professors who want to teach a two-semester course, supplemental topics can be found which deepen the understanding. (These sections are marked by an asterisk [*]. ) Fourth, the present text leaves the teaching of crystallography, X-ray diffrac tion, diffusion, lattice defects, etc. , to those courses which specialize in these subjects. As a rule, engineering students learn this material at the beginning of their upper division curriculum. The reader is, however, reminded of some of these topics whenever the need arises. Fifth, this book is distinctly divided into five self-contained parts which may be read independently.




Electrical and Electronic Properties of Materials


Book Description

Materials properties, whether microscopic or macroscopic, are of immense interest to the materials scientists, physicists, chemists as well as to engineers. Investigation of such properties, theoretically and experimentally, has been one of the fundamental research directions for many years that has also resulted in the discovery of many novel materials. It is also equally important to correctly model and measure these materials properties. Keeping such interests of research communities in mind, this book has been written on the properties of polyesters, varistor ceramics, and powdered porous compacts and also covers some measurement and parameter extraction methods for dielectric materials. Four contributed chapters and an introductory chapter from the editor explain each class of materials with practical examples.




Introduction to the Electronic Properties of Materials


Book Description

Electronic materials provide the basis for many high tech industries that have changed rapidly in recent years. In this fully revised and updated second edition, the author discusses the range of available materials and their technological applications. Introduction to the Electronic Properties of Materials, 2nd Edition presents the principles of the behavior of electrons in materials and develops a basic understanding with minimal technical detail. Broadly based, it touches on all of the key issues in the field and offers a multidisciplinary approach spanning physics, electrical engineering, and materials science. It provides an understanding of the behavior of electrons within materials, how electrons determine the magnetic thermal, optical and electrical properties of materials, and how electronic properties are controlled for use in technological applications. Although some mathematics is essential in this area, the mathematics that is used is easy to follow and kept to an appropriate level for the reader. An excellent introductory text for undergraduate students, this book is a broad introduction to the topic and provides a careful balance of information that will be appropriate for physicists, materials scientists, and electrical engineers.




Electronic Properties of Materials


Book Description

It is quite satisfying for an author to learn that his brainchild has been favorably accepted by students as well as by professors and thus seems to serve some useful purpose. This horizontally integrated text on the electronic properties of metals, alloys, semiconductors, insulators, ceramics, and poly meric materials has been adopted by many universities in the United States as well as abroad, probably because of the relative ease with which the material can be understood. The book has now gone through several re printing cycles (among them a few pirate prints in Asian countries). I am grateful to all readers for their acceptance and for the many encouraging comments which have been received. I have thought very carefully about possible changes for the second edition. There is, of course, always room for improvement. Thus, some rewording, deletions, and additions have been made here and there. I withstood, how ever, the temptation to expand considerably the book by adding completely new subjects. Nevertheless, a few pages on recent developments needed to be inserted. Among them are, naturally, the discussion of ceramic (high-tempera ture) superconductors, and certain elements of the rapidly expanding field of optoelectronics. Further, I felt that the readers might be interested in learning some more practical applications which result from the physical concepts which have been treated here.




Electrical Properties of Materials


Book Description

An informal and highly accessible writing style, a simple treatment of mathematics, and clear guide to applications, have made this book a classic text in electrical and electronic engineering. Students will find it both readable and comprehensive. The fundamental ideas relevant to the understanding of the electrical properties of materials are emphasized; in addition, topics are selected in order to explain the operation of devices having applications (or possible future applications) in engineering. The mathematics, kept deliberately to a minimum, is well within the grasp of a second-year student. This is achieved by choosing the simplest model that can display the essential properties of a phenomenom, and then examining the difference between the ideal and the actual behaviour. The whole text is designed as an undergraduate course. However most individual sections are self contained and can be used as background reading in graduate courses, and for interested persons who want to explore advances in microelectronics, lasers, nanotechnology and several other topics that impinge on modern life.




Electrical Properties of Materials


Book Description

"A classic text in the field, providing a readable and accessible guide for students of electrical and electronic engineering. Ideal for undergraduates, the book is also an invaluable reference for graduate students and others wishing to explore this rapidly expanding field." -Cover.




Electrical Properties of Polymers


Book Description

A comprehensive update on the fundamentals and recent advancements of electrical properties of polymers.




Electronic Properties of Materials


Book Description

This text on the electrical, optical, magnetic, and thermal properties of materials stresses concepts rather than mathematical formalism. Suitable for advanced undergraduates, it is intended for materials and electrical engineers who want to gain a fundamental understanding of alloys, semiconductor devices, lasers, magnetic materials, and so forth. The book is organized to be used in a one-semester course; to that end each section of applications, after the introduction to the fundamentals of electron theory, can be read independently of the others. Many examples from engineering practice serve to provide an understanding of common devices and methods. Among the modern applications covered are: high-temperature superconductors, optoelectronic materials, semiconductor device fabrication, xerography, magneto-optic memories, and amorphous ferromagnetics. The fourth edition has been revised and updated with an emphasis on the applications sections, which now cover devices of the next generation of electronics.




Advanced Electrical and Electronics Materials


Book Description

This comprehensive and unique book is intended to cover the vast and fast-growing field of electrical and electronic materials and their engineering in accordance with modern developments. Basic and pre-requisite information has been included for easy transition to more complex topics. Latest developments in various fields of materials and their sciences/engineering, processing and applications have been included. Latest topics like PLZT, vacuum as insulator, fiber-optics, high temperature superconductors, smart materials, ferromagnetic semiconductors etc. are covered. Illustrations and examples encompass different engineering disciplines such as robotics, electrical, mechanical, electronics, instrumentation and control, computer, and their inter-disciplinary branches. A variety of materials ranging from iridium to garnets, microelectronics, micro alloys to memory devices, left-handed materials, advanced and futuristic materials are described in detail.




Electronic Materials Science


Book Description

A thorough introduction to fundamental principles andapplications From its beginnings in metallurgy and ceramics, materials sciencenow encompasses such high- tech fields as microelectronics,polymers, biomaterials, and nanotechnology. Electronic MaterialsScience presents the fundamentals of the subject in a detailedfashion for a multidisciplinary audience. Offering a higher-leveltreatment than an undergraduate textbook provides, this textbenefits students and practitioners not only in electronics andoptical materials science, but also in additional cutting-edgefields like polymers and biomaterials. Readers with a basic understanding of physical chemistry or physicswill appreciate the text's sophisticated presentation of today'smaterials science. Instructive derivations of important formulae,usually omitted in an introductory text, are included here. Thisfeature offers a useful glimpse into the foundations of how thediscipline understands such topics as defects, phase equilibria,and mechanical properties. Additionally, concepts such asreciprocal space, electron energy band theory, and thermodynamicsenter the discussion earlier and in a more robust fashion than inother texts. Electronic Materials Science also features: * An orientation towards industry and academia drawn from theauthor's experience in both arenas * Information on applications in semiconductors, optoelectronics,photocells, and nanoelectronics * Problem sets and important references throughout * Flexibility for various pedagogical needs Treating the subject with more depth than any other introductorytext, Electronic Materials Science prepares graduate andupper-level undergraduate students for advanced topics in thediscipline and gives scientists in associated disciplines a clearreview of the field and its leading technologies.