Electrical Machines, Drives, and Power Systems


Book Description

The HVDC Light[trademark] method of transmitting electric power. Introduces students to an important new way of carrying power to remote locations. Revised, reformatted Instructor's Manual. Provides instructors with a tool that is much easier to read. Clear, practical approach.







Control of Electric Machine Drive Systems


Book Description

A unique approach to sensorless control and regulator design of electric drives Based on the author's vast industry experience and collaborative works with other industries, Control of Electric Machine Drive Systems is packed with tested, implemented, and verified ideas that engineers can apply to everyday problems in the field. Originally published in Korean as a textbook, this highly practical updated version features the latest information on the control of electric machines and apparatus, as well as a new chapter on sensorless control of AC machines, a topic not covered in any other publication. The book begins by explaining the features of the electric drive system and trends of development in related technologies, as well as the basic structure and operation principles of the electric machine. It also addresses steady state characteristics and control of the machines and the transformation of physical variables of AC machines using reference frame theory in order to provide a proper foundation for the material. The heart of the book reviews several control algorithms of electric machines and power converters, explaining active damping and how to regulate current, speed, and position in a feedback manner. Seung-Ki Sul introduces tricks to enhance the control performance of the electric machines, and the algorithm to detect the phase angle of an AC source and to control DC link voltages of power converters. Topics also covered are: Vector control Control algorithms for position/speed sensorless drive of AC machines Methods for identifying the parameters of electric machines and power converters The matrix algebra to model a three-phase AC machine in d-q-n axes Every chapter features exercise problems drawn from actual industry experience. The book also includes more than 300 figures and offers access to an FTP site, which provides MATLAB programs for selected problems. The book's practicality and realworld relatability make it an invaluable resource for professionals and engineers involved in the research and development of electric machine drive business, industrial drive designers, and senior undergraduate and graduate students. To obtain instructor materials please send an email to [email protected] To visit this book's FTP site to download MATLAB codes, please click on this link: ftp://ftp.wiley.com/public/sci_tech_med/electric_machine/ MATLAB codes are also downloadable from Wiley Booksupport Site at http://booksupport.wiley.com




Electrical Machines and Drives


Book Description

Recent years have brought substantial developments in electrical drive technology, with the appearance of highly rated, very-high-speed power-electronic switches, combined with microcomputer control systems.This popular textbook has been thoroughly revised and updated in the light of these changes. It retains its successful formula of teaching through worked examples, which are put in context with concise explanations of theory, revision of equations and discussion of the engineering implications. Numerous problems are also provided, with answers supplied.The third edition includes enhanced coverage of power-electronic systems and new material on closed-loop control, in addition to thorough treatment of electrical machines.




Power Quality in Power Systems and Electrical Machines


Book Description

The second edition of this must-have reference covers power quality issues in four parts, including new discussions related to renewable energy systems. The first part of the book provides background on causes, effects, standards, and measurements of power quality and harmonics. Once the basics are established the authors move on to harmonic modeling of power systems, including components and apparatus (electric machines). The final part of the book is devoted to power quality mitigation approaches and devices, and the fourth part extends the analysis to power quality solutions for renewable energy systems. Throughout the book worked examples and exercises provide practical applications, and tables, charts, and graphs offer useful data for the modeling and analysis of power quality issues. Provides theoretical and practical insight into power quality problems of electric machines and systems 134 practical application (example) problems with solutions 125 problems at the end of chapters dealing with practical applications 924 references, mostly journal articles and conference papers, as well as national and international standards and guidelines




Advancements in Electric Machines


Book Description

Traditionally, electrical machines are classi?ed into d. c. commutator (brushed) machines, induction (asynchronous) machines and synchronous machines. These three types of electrical machines are still regarded in many academic curricula as fundamental types, despite that d. c. brushed machines (except small machines) have been gradually abandoned and PM brushless machines (PMBM) and switched reluctance machines (SRM) have been in mass p- duction and use for at least two decades. Recently, new topologies of high torque density motors, high speed motors, integrated motor drives and special motors have been developed. Progress in electric machines technology is stimulated by new materials, new areas of applications, impact of power electronics, need for energy saving and new technological challenges. The development of electric machines in the next few years will mostly be stimulated by computer hardware, residential and public applications and transportation systems (land, sea and air). At many Universities teaching and research strategy oriented towards el- trical machinery is not up to date and has not been changed in some co- tries almost since the end of the WWII. In spite of many excellent academic research achievements, the academia–industry collaboration and technology transfer are underestimated or, quite often, neglected. Underestimation of the role of industry, unfamiliarity with new trends and restraint from technology transfer results, with time, in lack of external ?nancial support and drastic - cline in the number of students interested in Power Electrical Engineering.




Analysis of Electric Machinery and Drive Systems


Book Description

Introducing a new edition of the popular reference on machine analysis Now in a fully revised and expanded edition, this widely used reference on machine analysis boasts many changes designed to address the varied needs of engineers in the electric machinery, electric drives, and electric power industries. The authors draw on their own extensive research efforts, bringing all topics up to date and outlining a variety of new approaches they have developed over the past decade. Focusing on reference frame theory that has been at the core of this work since the first edition, this volume goes a step further, introducing new material relevant to machine design along with numerous techniques for making the derivation of equations more direct and easy to use. Coverage includes: Completely new chapters on winding functions and machine design that add a significant dimension not found in any other text A new formulation of machine equations for improving analysis and modeling of machines coupled to power electronic circuits Simplified techniques throughout, from the derivation of torque equations and synchronous machine analysis to the analysis of unbalanced operation A unique generalized approach to machine parameters identification A first-rate resource for engineers wishing to master cutting-edge techniques for machine analysis, Analysis of Electric Machinery and Drive Systems is also a highly useful guide for students in the field.




Multiphysics Simulation by Design for Electrical Machines, Power Electronics and Drives


Book Description

Presents applied theory and advanced simulation techniques for electric machines and drives This book combines the knowledge of experts from both academia and the software industry to present theories of multiphysics simulation by design for electrical machines, power electronics, and drives. The comprehensive design approach described within supports new applications required by technologies sustaining high drive efficiency. The highlighted framework considers the electric machine at the heart of the entire electric drive. The book also emphasizes the simulation by design concept—a concept that frames the entire highlighted design methodology, which is described and illustrated by various advanced simulation technologies. Multiphysics Simulation by Design for Electrical Machines, Power Electronics and Drives begins with the basics of electrical machine design and manufacturing tolerances. It also discusses fundamental aspects of the state of the art design process and includes examples from industrial practice. It explains FEM-based analysis techniques for electrical machine design—providing details on how it can be employed in ANSYS Maxwell software. In addition, the book covers advanced magnetic material modeling capabilities employed in numerical computation; thermal analysis; automated optimization for electric machines; and power electronics and drive systems. This valuable resource: Delivers the multi-physics know-how based on practical electric machine design methodologies Provides an extensive overview of electric machine design optimization and its integration with power electronics and drives Incorporates case studies from industrial practice and research and development projects Multiphysics Simulation by Design for Electrical Machines, Power Electronics and Drives is an incredibly helpful book for design engineers, application and system engineers, and technical professionals. It will also benefit graduate engineering students with a strong interest in electric machines and drives.




Electric Machines and Drives


Book Description

This book is part of a three-book series. Ned Mohan has been a leader in EES education and research for decades, as author of the best-selling text/reference Power Electronics. This book emphasizes applications of electric machines and drives that are essential for wind turbines and electric and hybrid-electric vehicles. The approach taken is unique in the following respects: A systems approach, where Electric Machines are covered in the context of the overall drives with applications that students can appreciate and get enthusiastic about; A fundamental and physics-based approach that not only teaches the analysis of electric machines and drives, but also prepares students for learning how to control them in a graduate level course; Use of the space-vector-theory that is made easy to understand. They are introduced in this book in such a way that students can appreciate their physical basis; A unique way to describe induction machines that clearly shows how they go from the motoring-mode to the generating-mode, for example in wind and electric vehicle applications, and how they ought to be controlled for the most efficient operation.




Electric Machinery and Power System Fundamentals


Book Description

This book is intended for a course that combines machinery and power systems into one semester. It is designed to be flexible and to allow instructors to choose chapters a la carte, so the instructor controls the emphasis. The text gives students the information they need to become real-world engineers, focusing on principles and teaching how to use information as opposed to doing a lot of calculations that would rarely be done by a practising engineer. The author compresses the material by focusing on its essence, underlying principles. MATLAB is used throughout the book in examples and problems.