Electrical Machines with MATLAB®, Second Edition


Book Description

Electrical Machines with MATLAB® encapsulates the invaluable insight and experience that eminent instructor Turan Gönen has acquired in almost 40 years of teaching. With simple, versatile content that separates it from other texts on electrical machines, this book is an ideal self-study tool for advanced students in electrical and other areas of engineering. In response to the often inadequate, rushed coverage of fundamentals in most basic circuit analysis books and courses, this resource is intelligently designed, easy to read, and packed with in-depth information on crucial concepts. Topics include three-phase circuits, power measurement in AC circuits, magnetic circuits, transformers, and induction, synchronous, and direct-current machines. The book starts by reviewing more basic concepts, with numerous examples to clarify their application. It then explores new "buzzword" topics and developments in the area of electrical machine applications and electric power systems, including: Renewable energy Wind energy and related conversion Solar energy Energy storage The smart grid Using International Systems (IS) units throughout, this cross-disciplinary design guide delves into commonly used vocabulary and symbols associated with electrical machinery. Several new appendices contain tools such as an extensive glossary to explain important terms. Outlining a wide range of information—and the many different ways to apply it—this book is an invaluable, multifunctional resource for students and professors, as well as practicing professionals looking to refresh and update their knowledge.




Electrical Machines


Book Description




Electric Machines


Book Description

This Second Edition extensively covers advanced issues/subjects in electric machines, starting from principles, to applications and case studies with ample graphical (numerical) results. This textbook is intended for second (and third) semester courses covering topics such as modeling of transients, control principles, electromagnetic and thermal finite element analysis, and optimal design (dimensioning). Notable recent knowledge with strong industrialization potential has been added to this edition, such as: Orthogonal models of multiphase a.c. machines Thermal Finite Element Analysis of (FEA) electric machines FEA–based–only optimal design of a PM motor case study Line start synchronizing premium efficiency PM induction machines Induction machines (three and single phase), synchronous machines with DC excitation, with PM-excitation, and with magnetically salient rotor and a linear Pm oscillatory motor are all investigated in terms of transients, electromagnetic FEM analysis and control principles. Case studies, numerical examples, and lots of discussion of FEM results for PMSM and IM are included throughout the book. The optimal design is treated in detail using Hooke–Jeeves and GA algorithms with case comparison studies in dedicated chapters for IM and PMSM. Numerous computer simulation programs in MATLAB® and Simulink® are available online that illustrate performance characteristics present in the chapters, and the FEM and optimal design case studies (and codes) may be used as homework to facilitate a deeper understanding of fundamental issues.




Power Conversion of Renewable Energy Systems


Book Description

Power Conversion of Renewable Energy Systems presents an introduction to conventional energy conversion components and systems, as well as those related to renewable energy. This volume introduces systems first, and then in subsequent chapters describes the components of energy systems in detail. Readers will find examples of renewable and conventional energy and power systems, including energy conversion, variable-speed drives and power electronics, in addition to magnetic devices such as transformers and rotating machines. Applications of PSpice, MATLAB, and Mathematica are also included, along with solutions to over 100 application examples. Power Conversion of Renewable Energy Systems aims to instruct readers how to actively apply the theories discussed within. It would be an ideal volume for researchers, students and engineers working with energy systems and renewable energy.




Electrical Machine Fundamentals with Numerical Simulation using MATLAB / SIMULINK


Book Description

A comprehensive text, combining all important concepts and topics of Electrical Machines and featuring exhaustive simulation models based on MATLAB/Simulink Electrical Machine Fundamentals with Numerical Simulation using MATLAB/Simulink provides readers with a basic understanding of all key concepts related to electrical machines (including working principles, equivalent circuit, and analysis). It elaborates the fundamentals and offers numerical problems for students to work through. Uniquely, this text includes simulation models of every type of machine described in the book, enabling students to design and analyse machines on their own. Unlike other books on the subject, this book meets all the needs of students in electrical machine courses. It balances analytical treatment, physical explanation, and hands-on examples and models with a range of difficulty levels. The authors present complex ideas in simple, easy-to-understand language, allowing students in all engineering disciplines to build a solid foundation in the principles of electrical machines. This book: Includes clear elaboration of fundamental concepts in the area of electrical machines, using simple language for optimal and enhanced learning Provides wide coverage of topics, aligning with the electrical machines syllabi of most international universities Contains extensive numerical problems and offers MATLAB/Simulink simulation models for the covered machine types Describes MATLAB/Simulink modelling procedure and introduces the modelling environment to novices Covers magnetic circuits, transformers, rotating machines, DC machines, electric vehicle motors, multiphase machine concept, winding design and details, finite element analysis, and more Electrical Machine Fundamentals with Numerical Simulation using MATLAB/Simulink is a well-balanced textbook perfect for undergraduate students in all engineering majors. Additionally, its comprehensive treatment of electrical machines makes it suitable as a reference for researchers in the field.




Electrical Machines


Book Description

This book endeavors to break the stereotype that basic electrical machine courses are limited only to transformers, DC brush machines, induction machines, and wound-field synchronous machines. It is intended to serve as a textbook for basic courses on Electrical Machines covering the fundamentals of the electromechanical energy conversion, transformers, classical electrical machines, i.e., DC brush machines, induction machines, wound-field rotor synchronous machines and modern electrical machines, i.e., switched reluctance machines (SRM) and permanent magnet (PM) brushless machines. In addition to academic research and teaching, the author has worked for over 18 years in US high-technology corporative businesses providing solutions to problems such as design, simulation, manufacturing and laboratory testing of large variety of electrical machines for electric traction, energy generation, marine propulsion, and aerospace electric systems.




Electric Machines


Book Description

This Second Edition extensively covers advanced issues/subjects in electric machines, starting from principles, to applications and case studies with ample graphical (numerical) results. This textbook is intended for second (and third) semester courses covering topics such as modeling of transients, control principles, electromagnetic and thermal finite element analysis, and optimal design (dimensioning). Notable recent knowledge with strong industrialization potential has been added to this edition, such as: Orthogonal models of multiphase a.c. machines Thermal Finite Element Analysis of (FEA) electric machines FEA–based–only optimal design of a PM motor case study Line start synchronizing premium efficiency PM induction machines Induction machines (three and single phase), synchronous machines with DC excitation, with PM-excitation, and with magnetically salient rotor and a linear Pm oscillatory motor are all investigated in terms of transients, electromagnetic FEM analysis and control principles. Case studies, numerical examples, and lots of discussion of FEM results for PMSM and IM are included throughout the book. The optimal design is treated in detail using Hooke–Jeeves and GA algorithms with case comparison studies in dedicated chapters for IM and PMSM. Numerous computer simulation programs in MATLAB® and Simulink® are available online that illustrate performance characteristics present in the chapters, and the FEM and optimal design case studies (and codes) may be used as homework to facilitate a deeper understanding of fundamental issues.




Applications of MATLAB in Science and Engineering


Book Description

The book consists of 24 chapters illustrating a wide range of areas where MATLAB tools are applied. These areas include mathematics, physics, chemistry and chemical engineering, mechanical engineering, biological (molecular biology) and medical sciences, communication and control systems, digital signal, image and video processing, system modeling and simulation. Many interesting problems have been included throughout the book, and its contents will be beneficial for students and professionals in wide areas of interest.




Electromagnetic Fields in Electrical Engineering


Book Description

This volume includes contributions on: field theory and advanced computational electromagnetics; electrical machines and transformers; optimization and interactive design; electromagnetics in materials; coupled field and electromagnetic components in mechatronics; induction heating systems; bioelectromagnetics; and electromagnetics in education.




Electronic Devices and Amplifier Circuits with MATLAB Computing, Second Edition


Book Description

This book is an undergraduate level textbook. The prerequisites for this text are first year calculus and physics, and a two-semester course in circuit analysis including the fundamental theorems and the Laplace transformation. This text begins with is an introduction to the nature of small signals used in electronic devices, amplifiers, definitions of decibels, bandwidth, poles and zeros, stability, transfer functions, and Bode plots. It continues with an introduction to solid state electronics, bipolar junction transistors, FETs op amps, integrated devices used in logic circuits, and their internal construction. It concludes with a discussion on amplifier circuits and contains several examples with MATLAB computations and Simulink models. A supplementary text to this title is our Digital Circuit Analysis & Design with Simulink Modeling and Introduction to CPLDs and FPGAs, ISBN 978-1-934404-06-5. For additional information contact the publisher at [email protected]