Electrical Properties of the Earth’s Mantle


Book Description

Table 1 Earth conductivity profiles Figure File Name Apx. Depth Remarks References 1. Global Models 1939-69 LAPR39 0--1250 global Sq, Dst LAHIRI and PRICE, 1939; PRICE, 1973 RIKI50 0--1400 misc. data sources RIKITAKE. 1950; 1966 MCD057 0--2900 LAPR39 + secular change McDoNALD, 1957 CANT60 100--600 see ECKHARDT et a!. , 1963 CANTWELL, 1960 YUKU65 380--1900 ring current YUKUTAKE, 1965 BANK69 0--1700 ring current BANKS, 1969; 1972 2. Global Models 1970--74 BFRS70 100--700 Sq, Dst 27-d variations BERDICHEVSKY et a!. , 1970; 1973 PRKR70 0--3200 rework BANKS, 1969, data PARKER, 1970 SCJA72 0--1000 pulsations, bays, Sq, Dst SCHMUCKER and JANKOWSKI, 1972 BANK72 230--1250 model summary BANKS, 1972 JADY74 0--2951 Sq, 27-d, annual variations JADY, 1974 FAR074 300--1500 with BFRS70 FAINBERG and ROTANOVA, 1974 SCHM74 0--1000 see HAAK, 1980 SCHMUCKER, 1974 DMRB77 0--1450 all available data DMITRIEV et al. , 1977 Global Models 1974-1983 3. PRKN74 60-430 Sq PARKINSON, 1974 DUCM80 0--2900 annual means DUCRUIX et a!. , 1980 ISIK80 320--2020 Sq, Dst, annual, solar cycle ISIKARA, 1980 ACMC81 0--2875 secular impulse ACACHE et a!. , 1980 ROKI82 350--1200 various methods ROKITYANSKY. 1982 JAPA83 0--1200 Dst JADY and PATERSON, 1983 4. Pacific Models LAUN74 0--500 near Calif. ; see DRURY, 1978 LAUNAY, 1975 LARSEN, 1975 LAHA75 0--800 Hawaii 7-1350 FILL80 NE Pacific FILLOUX, 1980 LAW and GREENHOUSE, LWGR81 0--200 Juan de Fuca 1981 0--250 Juan de Fuca OLDENBURG et a!. , 1984 OLJA84 OLCA84 0-250 near Calif. OLDENBURG et al. , 1984 OLNC84 0--250 N. cent. Pacific OLDENBURG et ai.




Electrical Properties of the Earth’s Mantle


Book Description

Reprint from Pure and Applied Geophysics (PAGEOPH), Volume 125 (1987), No. 2/3







The Earth's Crust and Upper Mantle


Book Description




Encyclopedia of Solid Earth Geophysics


Book Description

The past few decades have witnessed the growth of the Earth Sciences in the pursuit of knowledge and understanding of the planet that we live on. This development addresses the challenging endeavor to enrich human lives with the bounties of Nature as well as to preserve the planet for the generations to come. Solid Earth Geophysics aspires to define and quantify the internal structure and processes of the Earth in terms of the principles of physics and forms the intrinsic framework, which other allied disciplines utilize for more specific investigations. The first edition of the Encyclopedia of Solid Earth Geophysics was published in 1989 by Van Nostrand Reinhold publishing company. More than two decades later, this new volume, edited by Prof. Harsh K. Gupta, represents a thoroughly revised and expanded reference work. It brings together more than 200 articles covering established and new concepts of Geophysics across the various sub-disciplines such as Gravity, Geodesy, Geomagnetism, Seismology, Seismics, Deep Earth Processes, Plate Tectonics, Thermal Domains, Computational Methods, etc. in a systematic and consistent format and standard. It is an authoritative and current reference source with extraordinary width of scope. It draws its unique strength from the expert contributions of editors and authors across the globe. It is designed to serve as a valuable and cherished source of information for current and future generations of professionals.







Electrical Properties of Rocks


Book Description

Recently there has been growing interest in the physical properties of rocks. To interpret data on the geophysical fields observed near the Earth's surface, we must know the physical properties of the materials composing the interior. Moreover, the development of geophysical methods (in particular, electrical methods) is necessitating a multiple approach to the study of the physical properties of rocks and minerals. In connection with problems now appearing, the physical properties of rocks must be studied in the laboratory under var ious thermodynamic conditions. Electrical methods of geophysi cal exploration often may require only data obtained at atmos pheric pressure and room temperature, or at temperatures below 100°C. If, however, we have in mind geophysical field observa tions on the composition and state of matter deep in the Earth's crust and mantle, we must conduct laboratory experiments at high pressures and temperatures. For example, in interpreting data from geomagnetic soundings of the mantle, we may need experi mental results on the electrical properties of rocks at pressures of tens of kilobars and temperatures of the order of lOOO°C. In this connection, we must remember that pressure has relatively little effect on the electrical properties of rocks, whereas, tem perature affects them very strongly. v vi FOREWORD At present, while research into the mechanical properties of rocks (relating to the problems of geophysics, geochemistry, geology, and mining) is pressing forward on a wide front, much less work is being done with electrical properties.




Deep Carbon


Book Description

A comprehensive guide to carbon inside Earth - its quantities, movements, forms, origins, changes over time and impact on planetary processes. This title is also available as Open Access on Cambridge Core.




Silicate Melts


Book Description

This book focuses on the experimental determination of the physical properties of silicate melts and magmas close to glass transition. Abundant new data are presented. The same type of measurement is performed on a range of melts to test the effect of composition on physical properties; and a range of different techniques are used to determine the same physical properties to illustrate the relationships between the relaxation of the melt structure and the relaxation of its physical properties. This book is of interest to experimental researchers in the discussion of data obtained from both a materials science and a geoscientific point of view.




Treatise on Geophysics, Volume 2


Book Description

Treatise on Geophysics: Mineral Physics, Volume 2, provides a comprehensive review of the current state of understanding of mineral physics. Each chapter demonstrates the significant progress that has been made in the understanding of the physics and chemistry of minerals, and also highlights a number of issues which are still outstanding or that need further work to resolve current contradictions. The book first reviews the current status of our understanding of the nature of the deep Earth. These include the seismic properties of rocks and minerals; problems of the lower mantle and the core-mantle boundary; and the state of knowledge on mantle chemistry and the nature and evolution of the core. The discussions then turn to the theory underlying high-pressure, high-temperature physics, and the major experimental methods being developed to probe this parameter space. The remaining chapters explain the specific techniques for measuring elastic and acoustic properties, electronic and magnetic properties, and rheological properties; the nature and origin of anisotropy in the Earth; the properties of melt; and the magnetic and electrical properties of mantle phases. - Self-contained volume starts with an overview of the subject then explores each topic with in depth detail - Extensive reference lists and cross references with other volumes to facilitate further research - Full-color figures and tables support the text and aid in understanding - Content suited for both the expert and non-expert