Electricity, Magnetism and Electromagnetic Theory


Book Description

Electricity, Magnetism and Electromagnetic Theory has been designed to meet the needs of BSc (Physics) students as per the UGC Choice Based Credit System. This textbook provides a thorough understanding of the fundamental concepts of electricity, magnetism and electromagnetic theory. Having a problem-solving approach, it covers the entire spectrum of the subject with discussion on topics such as electrostatics, magnetostatics, electromagnetic induction, Maxwell’s equations and electromagnetic wave propagation. The concepts are exhaustively presented with numerous examples and figures/diagrams which would help the students in analysing and retaining the concepts in an effective manner.




Electricity and Magnetism


Book Description













Electromagnetic Theory


Book Description

In 1865 James Clerk Maxwell (1831 - 1879) published this work, "A Dynamical Theory of the Electromagnetic Field" demonstrating that electric and magnetic fields travel through space as waves moving at the speed of light. He proposed that light is an undulation in the same medium that is the cause of electric and magnetic phenomena. The unification of light and electrical phenomena led him to predict the existence of radio waves. Maxwell is also regarded as the founding scientist of the modern field of electrical engineering. His discoveries helped usher in the era of modern physics, laying the foundation for such fields as special relativity and quantum mechanics. Many physicists regard Maxwell as the 19th-century scientist having the greatest influence on 20th-century physics. His contributions to physics are considered by many to be of the same magnitude as the ones of Isaac Newton and Albert Einstein. In this original treatise Maxwell introduces the best of his mind in seven parts, to include: Part i. introductory. Part ii. on electromagnetic induction. Part iii. general equations of the electromagnetic field. Part iv. mechanical actions in the field. Part v. theory of condensers. Part vi. electromagnetic theory of light. Part vii. calculation of the coefficients of electromagnetic induction




Electricity, Magnetism, and Light


Book Description

A very comprehensive introduction to electricity, magnetism and optics ranging from the interesting and useful history of the science, to connections with current real-world phenomena in science, engineering and biology, to common sense advice and insight on the intuitive understanding of electrical and magnetic phenomena. This is a fun book to read, heavy on relevance, with practical examples, such as sections on motors and generators, as well as `take-home experiments' to bring home the key concepts. Slightly more advanced than standard freshman texts for calculus-based engineering physics courses with the mathematics worked out clearly and concisely. Helpful diagrams accompany the discussion. The emphasis is on intuitive physics, graphical visualization, and mathematical implementation. - Electricity, Magnetism, and Light is an engaging introductory treatment of electromagnetism and optics for second semester physics and engineering majors. - Focuses on conceptual understanding, with an emphasis on relevance and historical development. - Mathematics is specific and avoids unnecessary technical development. - Emphasis on physical concepts, analyzing the electromagnetic aspects of many everyday phenomena, and guiding readers carefully through mathematical derivations. - Provides a wealth of interesting information, from the history of the science of electricity and magnetism, to connections with real world phenomena in science, engineering, and biology, to common sense advice and insight on the intuitive understanding of electrical and magnetic phenomena




Magnetism: A Very Short Introduction


Book Description

What is that strange and mysterious force that pulls one magnet towards another, yet seems to operate through empty space? This is the elusive force of magnetism. Stephen J. Blundell considers early theories of magnetism, the discovery that Earth is a magnet, and the importance of magnetism in modern technology.




Electricity and Magnetism


Book Description

This is an undergraduate textbook on the physics of electricity, magnetism, and electromagnetic fields and waves. It is written mainly with the physics student in mind, although it will also be of use to students of electrical and electronic engineering. The approach is concise but clear, and the authors have assumed that the reader will be familiar with the basic phenomena. The theory, however, is set out in a completely self-contained and coherent way and developed to the point where the reader can appreciate the beauty and coherence of the Maxwell equations. Throughout, the authors stress the relationships between microscopic structure of matter and the observed macroscopic electric and magnetic fields. The applications cover a wide range of topics, and each chapter ends with a set of problems with answers.




Advanced Electromagnetism: Foundations: Theory And Applications


Book Description

Advanced Electromagnetism: Foundations, Theory and Applications treats what is conventionally called electromagnetism or Maxwell's theory within the context of gauge theory or Yang-Mills theory. A major theme of this book is that fields are not stand-alone entities but are defined by their boundary conditions. The book has practical relevance to efficient antenna design, the understanding of forces and stresses in high energy pulses, ring laser gyros, high speed computer logic elements, efficient transfer of power, parametric conversion, and many other devices and systems. Conventional electromagnetism is shown to be an underdeveloped, rather than a completely developed, field of endeavor, with major challenges in development still to be met.