Electrochemical and Corrosion Behavior of Metallic Glasses


Book Description

Metallic glasses are multi-component metallic alloys with disordered atomic distribution unlike their crystalline counterparts with long range periodicity in arrangement of atoms. Metallic glasses of different compositions are being commercially used in bulk form and as coatings because of their excellent corrosion resistance. This book was written with the objective of providing a comprehensive understanding of the electrochemical and corrosion behavior of metallic glasses for a wide range of compositions. Corrosion in structural materials leads to rapid deterioration in the performance of critical components and serious economic implications including property damage and loss in human life. Discovery and development of metallic alloys with enhanced corrosion resistance will have a sizable impact in a number of areas including manufacturing, aerospace, oil and gas, nuclear industry, and load-bearing bioimplants. The corrosion resistance of many metallic glass systems is superior compared to conventionally used alloys in different environments. In this book, we discuss in detail the role of chemistry, processing conditions, environment, and surface state on the corrosion behavior of metallic glasses and compare their performance with conventional alloys. Several of these alloy systems consist of all biocompatible and non-allergenic elements making them attractive for bioimplants, stents, and surgical tools. To that end, critical insights are provided on the bio-corrosion response of some metallic glasses in simulated physiological environment.




Electrochemical and Corrosion Behavior of Metallic Glasses


Book Description

Metallic glasses are multi-component metallic alloys with disordered atomic distribution unlike their crystalline counterparts with long range periodicity in arrangement of atoms. Metallic glasses of different compositions are being commercially used in bulk form and as coatings because of their excellent corrosion resistance. This book was written with the objective of providing a comprehensive understanding of the electrochemical and corrosion behavior of metallic glasses for a wide range of compositions. Corrosion in structural materials leads to rapid deterioration in the performance of critical components and serious economic implications including property damage and loss in human life. Discovery and development of metallic alloys with enhanced corrosion resistance will have a sizable impact in a number of areas including manufacturing, aerospace, oil and gas, nuclear industry, and load-bearing bioimplants. The corrosion resistance of many metallic glass systems is superior compared to conventionally used alloys in different environments. In this book, we discuss in detail the role of chemistry, processing conditions, environment, and surface state on the corrosion behavior of metallic glasses and compare their performance with conventional alloys. Several of these alloy systems consist of all biocompatible and non-allergenic elements making them attractive for bioimplants, stents, and surgical tools. To that end, critical insights are provided on the bio-corrosion response of some metallic glasses in simulated physiological environment.




Metallic Glasses


Book Description

Metallic glasses and amorphous materials have attracted much more attention in the last two decades. A noncrystalline solid produced by continuous cooling from the liquid state is known as a glass. From the other point of view, a noncrystalline material, obtained by any other process, for example, vapor deposition or solid-state processing methods such as mechanical alloying, but not directly from the liquid state, is referred to as an amorphous material. At this moment, bulk metallic glasses (BMG) are appearing as a new class of metallic materials with unique physical and mechanical properties for structural and functional usage. Extreme values of strength, fracture toughness, magnetic properties, corrosion resistance, and other properties have been registered in BMG materials.




Electrochemical and Optical Techniques for the Study and Monitoring of Metallic Corrosion


Book Description

In spite of considerable efforts over the years to understand and combat materials degradation via corrosion processes, many challenges still remain both in the theoretical understanding of the phenomena and in seeking pratical solutions to the perennial problem. Progress has been slow due to the complexity of the processes and the systems involved. Fortunately, in recent years there has been a renaissance in the development of new electrochemical and optical techniques, as well as advances in instrumentation, which have greatly aided our quest to gain insight into the complex mechanisms involved in metallic corrosion and passivation. Numerous scientific meetings, symposia, and workshops have been held allover the world which attest to the frenzy of activities in corrosion science and technology. However, most of these conferences have dealt mainly with recent research results. There appeared to be a need to assess and disseminate our present state of knowledge in the field as regards measurement techniques, theory, and instrumentation. The present NATO Advanced Study Institute was therefore held in Viana do Castelo, Portugal from July 9 to 21, 1989. The Institute consisted of a series of tutorial lectures, poster sessions, and round-table discussions interspersed evenly over the two-week period. It was attended by 75 participants from several countries representing industry, government and university laboratories.




Bulk Metallic Glasses


Book Description

Reflecting the fast pace of research in the field, the Second Edition of Bulk Metallic Glasses has been thoroughly updated and remains essential reading on the subject. It incorporates major advances in glass forming ability, corrosion behavior, and mechanical properties. Several of the newly proposed criteria to predict the glass-forming ability of alloys have been discussed. All other areas covered in this book have been updated, with special emphasis on topics where significant advances have occurred. These include processing of hierarchical surface structures and synthesis of nanophase composites using the chemical behavior of bulk metallic glasses and the development of novel bulk metallic glasses with high-strength and high-ductility and superelastic behavior. New topics such as high-entropy bulk metallic glasses, nanoporous alloys, novel nanocrystalline alloys, and soft magnetic glassy alloys with high saturation magnetization have also been discussed. Novel applications, such as metallic glassy screw bolts, surface coatings, hyperthermia glasses, ultra-thin mirrors and pressure sensors, mobile phone casing, and degradable biomedical materials, are described. Authored by the world’s foremost experts on bulk metallic glasses, this new edition endures as an indispensable reference and continues to be a one-stop resource on all aspects of bulk metallic glasses.




Corrosion of Titanium


Book Description




Fundamentals of Electrochemical Corrosion


Book Description

Covering the essential aspects of the corrosion behavior of metals in aqueous environments, this book is designed with the flexibility needed for use in courses for upper-level undergraduate and graduate students, for concentrated courses in industry, for individual study, and as a reference book.




Corrosion and Electrochemical Properties of Bulk Metallic Glasses and Nano-Crystalline Materials


Book Description

The papers included in this issue of ECS Transactions were originally presented in the symposium ¿Corrosion and Electrochemical Properties of Bulk Metallic Glasses and Nano-Crystalline Materials¿, held during the PRiME 2008 joint international meeting of The Electrochemical Society and The Electrochemical Society of Japan, with the technical cosponsorship of the Japan Society of Applied Physics, the Korean Electrochemical Society, the Electrochemistry Division of the Royal Australian Chemical Institute, and the Chinese Society of Electrochemistry. This meeting was held in Honolulu, Hawaii, from October 12 to 17, 2008.




Electrochemical and Optical Techniques for the Study and Monitoring of Metallic Corrosion


Book Description

In spite of considerable efforts over the years to understand and combat materials degradation via corrosion processes, many challenges still remain both in the theoretical understanding of the phenomena and in seeking pratical solutions to the perennial problem. Progress has been slow due to the complexity of the processes and the systems involved. Fortunately, in recent years there has been a renaissance in the development of new electrochemical and optical techniques, as well as advances in instrumentation, which have greatly aided our quest to gain insight into the complex mechanisms involved in metallic corrosion and passivation. Numerous scientific meetings, symposia, and workshops have been held allover the world which attest to the frenzy of activities in corrosion science and technology. However, most of these conferences have dealt mainly with recent research results. There appeared to be a need to assess and disseminate our present state of knowledge in the field as regards measurement techniques, theory, and instrumentation. The present NATO Advanced Study Institute was therefore held in Viana do Castelo, Portugal from July 9 to 21, 1989. The Institute consisted of a series of tutorial lectures, poster sessions, and round-table discussions interspersed evenly over the two-week period. It was attended by 75 participants from several countries representing industry, government and university laboratories.




Electrochemistry for Materials Science


Book Description

This book introduces the principles of electrochemistry with a special emphasis on materials science. This book is clearly organized around the main topic areas comprising electrolytes, electrodes, development of the potential differences in combining electrolytes with electrodes, the electrochemical double layer, mass transport, and charge transfer, making the subject matter more accessible.In the second part, several important areas for materials science are described in more detail. These chapters bridge the gap between the introductory textbooks and the more specialized literature. They feature the electrodeposition of metals and alloys, electrochemistry of oxides and semiconductors, intrinsically conducting polymers, and aspects of nanotechnology with an emphasis on the codeposition of nanoparticles.This book provides a good introduction into electrochemistry for the graduate student. For the research student as well as for the advanced reader there is sufficient information on the basic problems in special chapters. The book is suitable for students and researchers in chemistry, physics, engineering, as well as materials science.- Introduction into electrochemistry- Metal and alloy electrodeposition- Oxides and semiconductors, corrosion- Intrinsically conducting polymers- Codeposition of nanoparticles, multilayers