Electrochemical DNA Biosensors


Book Description

This book focuses on the basic electrochemical applications of DNA in various areas, from basic principles to the most recent discoveries. The book comprises theoretical and experimental analysis of various properties of nucleic acids, research methods, and some promising applications. The topics discussed in the book include electrochemical detection of DNA hybridization based on latex/gold nanoparticle and nanotubes; nanomaterial-based electrochemical DNA detection; electrochemical detection of microorganism-based DNA biosensors; gold nanoparticle-based electrochemical DNA biosensors; electrochemical detection of the aptamer-target interaction; nanoparticle-induced catalysis for DNA biosensing; basic terms regarding electrochemical DNA (nucleic acids) biosensors; screen-printed electrodes for electrochemical DNA detection; application of field-effect transistors to label free electrical DNA biosensor arrays; and electrochemical detection of nucleic acids using branched DNA amplifiers.




Electrochemical Biosensors


Book Description

Electrochemical Biosensors summarizes fundamentals and trends in electrochemical biosensing. It introduces readers to the principles of transducing biological information to measurable electrical signals to identify and quantify organic and inorganic substances in samples. The complexity of devices related to biological matrices makes this challenging, but this measurement and analysis are critically valuable in biotechnology and medicine. Electrochemical biosensors combine the sensitivity of electroanalytical methods with the inherent bioselectivity of the biological component. Some of these sensor devices have reached the commercial stage and are routinely used in clinical, environmental, industrial and agricultural applications. - Describes several electrochemical methods used as detection techniques with biosensors - Discusses different modifiers, including nanomaterials, for preparing suitable pathways for immobilizing biomaterials at the sensor - Explains various types of signal monitoring, along with several recognition systems, including antibodies/antigens, DNA-based biosensors, aptamers (protein-based), and more




Electrochemical Biosensors


Book Description

Since four decades, rapid detection and monitoring in clinical and food diagnostics and in environmental and biodefense have paved the way for the elaboration of electrochemical biosensors. Thanks to their adaptability, ease of use in relatively complex samples, and their portability, electrochemical biosensors now are one of the mainstays of analy




Biosensors – Recent Advances and Future Challenges


Book Description

The present book is devoted to all aspects of biosensing in a very broad definition, including, but not limited to, biomolecular composition used in biosensors (e.g., biocatalytic enzymes, DNAzymes, abiotic nanospecies with biocatalytic features, bioreceptors, DNA/RNA, aptasensors, etc.), physical signal transduction mechanisms (e.g., electrochemical, optical, magnetic, etc.), engineering of different biosensing platforms, operation of biosensors in vitro and in vivo (implantable or wearable devices), self-powered biosensors, etc. The biosensors can be represented with analogue devices measuring concentrations of analytes and binary devices operating in the YES/NO format, possibly with logical processing of input signals. Furthermore, the book is aimed at attracting young scientists and introducing them to the field, while providing newcomers with an enormous collection of literature references.




Electrochemical Sensors, Biosensors and their Biomedical Applications


Book Description

This book broadly reviews the modem techniques and significant applications of chemical sensors and biosensors. Chapters are written by experts in the field – including Professor Joseph Wang, the most cited scientist in the world and renowned expert on sensor science who is also co-editor. Each chapter provides technical details beyond the level found in typical journal articles, and explores the application of chemical sensors and biosensors to a significant problem in biomedical science, also providing a prospectus for the future.This book compiles the expert knowledge of many specialists in the construction and use of chemical sensors and biosensors including nitric oxide sensors, glucose sensors, DNA sensors, hydrogen sulfide sensors, oxygen sensors, superoxide sensors, immuno sensors, lab on chip, implatable microsensors, et al. Emphasis is laid on practical problems, ranging from chemical application to biomedical monitoring and from in vitro to in vivo, from single cell to animal to human measurement. This provides the unique opportunity of exchanging and combining the expertise of otherwise apparently unrelated disciplines of chemistry, biological engineering, and electronic engineering, medical, physiological. - Provides user-oriented guidelines for the proper choice and application of new chemical sensors and biosensors - Details new methodological advancements related to and correlated with the measurement of interested species in biomedical samples - Contains many case studies to illustrate the range of application and importance of the chemical sensors and biosensors




Nucleic Acid Biosensors for Environmental Pollution Monitoring


Book Description

Nucleic acids are the fundamental building blocks of life and are found in all living things. In recent years, their functions have been shown to extend beyond the Watson-Crick base pair recognition of complementary strands. Molecules (known as aptamers) consisting of 40-50 nucleotides have been isolated that are able to bind a broad range of molecules with high affinity and specificity. The molecules recognized by aptamers range from small organic molecules to proteins, cells and even intact viral particles. Catalytic DNA molecules called NAzymes (RNAzyme or DNAzyme) have also been shown to exist and, when combined with aptamers, are known as aptazymes. These biomolecules can be used to develop smart and innovative biosensors for environmental analysis. Monitoring of contaminants in the air, water and soil is a key component in understanding and managing risks to human health and ecosystems. This, in conjunction with the time and cost involved in traditional chemical analysis, means there is a growing need for simple, rapid, cost-effective and portable screening methods. Biosensors are compact devices which complement current field screening and monitoring methods. This book demonstrates the incredible opportunities that nucleic acids can offer to environmental analytical chemistry. The chapters: show how nucleic acids have a pivotal role in the development of smart biosensors for environmental monitoring; describe the development of biosensors based on aptamers and NAzymes for the detection of organic and inorganic pollutants; deal with the use of nucleic acid based biosensors for environmental toxicity screening, and detail the use of nanomaterials, as well as miniaturization and lab-on-a-chip technologies, for nucleic acid based biosensing systems.




Electrochemical DNA Biosensors


Book Description

This book focuses on the basic electrochemical applications of DNA in various areas, from basic principles to the most recent discoveries. The book comprises theoretical and experimental analysis of various properties of nucleic acids, research methods, and some promising applications. The topics discussed in the book include electrochemical detect




Biosensors


Book Description

This book covers novel and current strategies for biosensing, from the use of nanomaterials and biological functionalized surfaces to the mathematical assessment of novel biosensors and their potential use as wearable devices for continuous monitoring. Biosensing technologies can be used in the medical field for the early detection of disease, monitoring effectiveness of treatments, detecting nervous system signals for controlling robotic prosthesis, and much more. This book includes eleven chapters that examine and discuss several strategies of biosensing, proposing mathematical designs that address the latest reported technologies.




Electrochemistry of Nucleic Acids and Proteins


Book Description

DNA (sometimes referred to as the molecule of life), is the most interesting and most important of all molecules. Electrochemistry of Nucleic Acids and Proteins: Towards Electrochemical Sensors for Genomics and Proteomics is devoted to the electrochemistry of DNA and RNA and to the development of sensors for detecting DNA damage and DNA hybridization. Volume 1, in the brand new series Perspectives in Bioanalysis, looks at the electroanalytical chemistry of nucleic acids and proteins, development of electrochemical sensors and their application in biomedicine and in the new fields of genomics and proteomics. The authors have expertly formatted the information for a wide variety of readers, including new developments that will inspire students and young scientists to create new tools for science and medicine in the 21st century.* Covers highly sophisticated methods of electrochemical analysis of nucleic acids and proteins* Summarises the present state of electrochemical analysis of nucleic acids and proteins* Includes future trends in the electrochemical analysis in genomics and proteomics




Chemical Sensors and Biosensors


Book Description

Key features include: Self-assessment questions and exercises Chapters start with essential principles, then go on to address more advanced topics More than 1300 references to direct the reader to key literature and further reading Highly illustrated with 450 figures, including chemical structures and reactions, functioning principles, constructive details and response characteristics Chemical sensors are self-contained analytical devices that provide real-time information on chemical composition. A chemical sensor integrates two distinct functions: recognition and transduction. Such devices are widely used for a variety of applications, including clinical analysis, environment monitoring and monitoring of industrial processes. This text provides an up-to-date survey of chemical sensor science and technology, with a good balance between classical aspects and contemporary trends. Topics covered include: Structure and properties of recognition materials and reagents, including synthetic, biological and biomimetic materials, microorganisms and whole-cells Physicochemical basis of various transduction methods (electrical, thermal, electrochemical, optical, mechanical and acoustic wave-based) Auxiliary materials used e.g. synthetic and natural polymers, inorganic materials, semiconductors, carbon and metallic materials properties and applications of advanced materials (particularly nanomaterials) in the production of chemical sensors and biosensors Advanced manufacturing methods Sensors obtained by combining particular transduction and recognition methods Mathematical modeling of chemical sensor processes Suitable as a textbook for graduate and final year undergraduate students, and also for researchers in chemistry, biology, physics, physiology, pharmacology and electronic engineering, this bookis valuable to anyone interested in the field of chemical sensors and biosensors.