Electrochemical Science for a Sustainable Society


Book Description

This book honors Professor. John O’M. Bockris, presenting authoritative reviews on some of the subjects to which he made significant contributions – i.e., electrocatalysis, fuel cells, electrochemical theory, electrochemistry of single crystals, in situ techniques, rechargeable batteries, passivity, and solar-fuels – and revealing the roles of electrochemical science and technology in achieving a sustainable society. Electrochemistry has long been an object of study and is now growing in importance, not only because of its fundamental scientific interest but also because of the central role it is expected to play in a future sustainable society. Professor John O’M. Bockris contributed greatly to various aspects of fundamental and applied electrochemistry – such as the structure of the double layer, kinetics and mechanism of the electrochemistry of hydrogen and oxygen, electrocatalysis, adsorption and electrochemical oxidation of small organic molecules, fuel cells, electrocrystallization, theoretical electrochemistry, new methods, photoelectrochemistry, bioelectrochemistry, corrosion and passivity, hydrogen in metals, ionic solutions and ionic liquids, and molten silicates and glasses, as well as socio-economic issues such as the hydrogen economy – for over half a century from 1945 until his retirement in 1997.




Sustainable and Green Electrochemical Science and Technology


Book Description

Sustainable and Green Electrochemical Science and Technology brings together the basic concepts of electrochemical science and engineering and shows how these are applied in an industrial context, emphasising the major role that electrochemistry plays within society and industry in providing cleaner, greener and more sustainable technologies. Electrochemistry has many applications for sustainability; it can be used to store energy, synthesise materials and chemicals, to generate power and to recycle valuable resources. Coverage includes Electrochemistry, Electrocatalysis and Thermodynamics Electrochemical Cells, Materials and Reactors Carbon Dioxide Reduction and Electro-Organic Synthesis Hydrogen production and Water Electrolysis Inorganic Synthesis Electrochemical Energy Storage and Power Sources Electrochemical processes for recycling and resource recovery Fuel Cell Technologies This book is targeted at both industrial and academic readers, providing a good technological reference base for electrochemistry. It will enable the reader to build on basic principles of electrochemistry, and takes these through to cell design for various and diverse applications.




Sustainable and Functional Redox Chemistry


Book Description

Mimicking nature's efficiency and sustainability in organic chemistry is a major goal for future chemists; redox reactions are a key element in a variety of fields ranging from synthesis and catalysis to materials chemistry and analytical applications. Sustainability is increasingly becoming a consideration in synthesis and functional chemistry and an essential element for the next generation of chemistry in academia and industry. This book represents a compilation of the latest advancements in functional redox chemistry and demonstrates its importance in achieving a more sustainable future. This book is an ideal companion for any postgraduate students or researchers interested in sustainability in academia and industry.




Electrochemical Energy Storage


Book Description

The electrochemical storage of energy has become essential in assisting the development of electrical transport and use of renewable energies. French researchers have played a key role in this domain but Asia is currently the market leader. Not wanting to see history repeat itself, France created the research network on electrochemical energy storage (RS2E) in 2011. This book discusses the launch of RS2E, its stakeholders, objectives, and integrated structure that assures a continuum between basic research, technological research and industries. Here, the authors will cover the technological advances as well as the challenges that must still be resolved in the field of electrochemical storage, taking into account sustainable development and the limited time available to us.




Introduction to Electrochemical Science and Engineering


Book Description

The Second Edition of Introduction to Electrochemical Science and Engineering outlines the basic principles and techniques used in the development of electrochemical engineering related technologies, such as fuel cells, electrolyzers, and flow-batteries. Covering topics from electrolyte solutions to electrochemical energy conversion systems and corrosion, this revised and expanded edition provides new educational material to help readers familiarize themselves with some of today’s most useful electrochemical concepts. The Second Edition includes a new Appendix C with a detailed description of how the most common electrochemical laboratories can be organized, what data should be collected, and how the data should be treated and presented in a report. Video demonstrations for these laboratories are available on YouTube. In addition, the author has added conceptual and numerical exercises to all of the chapters to help with the understanding of the book material and to extend the important aspects of the electrochemical science and engineering. Finally, electrochemical impedance spectroscopy is now used in most electrochemical laboratories, and so a new section briefly describes this technique in Chapter 7. This new edition Ensures readers have a fundamental knowledge of the core concepts of electrochemical science and engineering, such as electrochemical cells, electrolytic conductivity, electrode potential, and current–potential relations related to a variety of electrochemical systems Develops the initial skills needed to understand an electrochemical experiment and successfully evaluate experimental data without visiting a laboratory Promotes an appreciation of the capabilities and applications of key electrochemical techniques Features eight lab descriptions and instructions that can be used to develop the labs by instructors for a university electrochemical engineering class Integrates eight online videos with lab demonstrations to advise instructors and students on how the labs can be carried out Features a solutions manual for adopting instructors The Second Edition is an ideal and unique text for undergraduate engineering and science students and readers in need of introductory-level content. Graduate students and engineers looking for a quick introduction to the subject will benefit from the simple structure of this book. Instructors interested in teaching the subject to undergraduate students can immediately use this book without reservation.




Flexible, Wearable, and Stretchable Electronics


Book Description

Remarkable progress has been achieved within recent years in developing flexible, wearable, and stretchable (FWS) electronics. These electronics will play an increasingly significant role in the future of electronics and will open new product paradigms that conventional semiconductors are not capable of. This is because flexible electronics will allow us to build flexible circuits and devices on a substrate that can be bent, stretched, or folded without losing functionality. This revolutionary change will impact how we interact with the world around us. Future electronic devices will use flexible electronics as part of ambient intelligence and ubiquitous computing for many different applications such as consumer electronics, medical, healthcare, and security devices. Thus, these devices have the potential to create a huge market all over the world. Flexible, Wearable, and Stretchable Electronics, provide a comprehensive technological review of the state-of-the-art developments in FWS electronics. This book offers the reader a taste of what is possible with FWS electronics and describes how these electronics can provide unique solutions for a wide variety of applications. Furthermore, the book introduces and explains new applications of flexible technology that has opened up the future of FWS electronics.




Progresses in Ammonia: Science, Technology and Membranes


Book Description

Progresses in Ammonia: science, technology and membranes-Applications and use coversvarious ammonia applicatins such as in sensors and devices, in dyes and cleaning, in cooling systems, in desalination, in anaerobic digestion, in terrestrial vegetation, in fabric, textile and leather products, in metals heat-treating, in acid deposition, in carbon dioxide capture, in the hydrogen production, storage and generation. - Covers various applications of ammonia as an energy source and as an alternative power generation - Discusses ammonia applications in various chemical and petrochemical plants - Describes novel and non-industrial usages of ammonia, such as human care and treatment







Volume 1: Modern Electrochemistry


Book Description

This book had its nucleus in some lectures given by one of us (J. O’M. B. ) in a course on electrochemistry to students of energy conversion at the University of Pennsyl- nia. It was there that he met a number of people trained in chemistry, physics, biology, metallurgy, and materials science, all of whom wanted to know something about electrochemistry. The concept of writing a book about electrochemistry which could be understood by people with very varied backgrounds was thereby engendered. The lectures were recorded and written up by Dr. Klaus Muller as a 293-page manuscript. At a later stage, A. K. N. R. joined the effort; it was decided to make a fresh start and to write a much more comprehensive text. Of methods for direct energy conversion, the electrochemical one is the most advanced and seems the most likely to become of considerable practical importance. Thus, conversion to electrochemically powered transportation systems appears to be an important step by means of which the difficulties of air pollution and the effects of an increasing concentration in the atmosphere of carbon dioxide may be met. Cor- sion is recognized as having an electrochemical basis. The synthesis of nylon now contains an important electrochemical stage. Some central biological mechanisms have been shown to take place by means of electrochemical reactions. A number of American organizations have recently recommended greatly increased activity in training and research in electrochemistry at universities in the United States.




Metal Oxide-Based Nanostructured Electrocatalysts for Fuel Cells, Electrolyzers, and Metal-Air Batteries


Book Description

Metal Oxide-Based Nanostructured Electrocatalysts for Fuel Cells, Electrolyzers, and Metal-Air Batteries is a comprehensive book summarizing the recent overview of these new materials developed to date. The book is motivated by research that focuses on the reduction of noble metal content in catalysts to reduce the cost associated to the entire system. Metal oxides gained significant interest in heterogeneous catalysis for basic research and industrial deployment. Metal Oxide-Based Nanostructured Electrocatalysts for Fuel Cells, Electrolyzers, and Metal-Air Batteries puts these opportunities and challenges into a broad context, discusses the recent researches and technological advances, and finally provides several pathways and guidelines that could inspire the development of ground-breaking electrochemical devices for energy production or storage. Its primary focus is how materials development is an important approach to produce electricity for key applications such as automotive and industrial. The book is appropriate for those working in academia and R&D in the disciplines of materials science, chemistry, electrochemistry, and engineering. - Includes key aspects of materials design to improve the performance of electrode materials for energy conversion and storage device applications - Reviews emerging metal oxide materials for hydrogen production, hydrogen oxidation, oxygen reduction and oxygen evolution - Discusses metal oxide electrocatalysts for water-splitting, metal-air batteries, electrolyzer, and fuel cell applications