Electrochemical Sensor Analysis


Book Description

Electrochemical Sensor Analysis (ECSA) presents the recent advances in electrochemical (bio)sensors and their practical applications in real clinical, environment, food and industry related samples, as well as in the safety and security arena. In a single source, it covers the entire field of electrochemical (bio)sensor designs and characterizations. The 38 chapters are grouped in seven sections: 1) Potentiometric sensors, 2) Voltammetric sensors, 3) Electrochemical gas sensors 4) Enzyme-based sensors 5) Affinity biosensors 6) Thick and thin film biosensors and 7) Novel trends. Written by experts working in the diverse technological and scientific fields related to electrochemical sensors, each section provides an overview of a specific class of electrochemical sensors and their applications. This interdisciplinary text will be useful for researchers and professionals alike. Covers applications and problem solving (sensitivity, interferences) in real sample analysis Details procedures to construct and characterize electrochemical (bio)sensors




Electrochemical Sensors, Biosensors and their Biomedical Applications


Book Description

This book broadly reviews the modem techniques and significant applications of chemical sensors and biosensors. Chapters are written by experts in the field – including Professor Joseph Wang, the most cited scientist in the world and renowned expert on sensor science who is also co-editor. Each chapter provides technical details beyond the level found in typical journal articles, and explores the application of chemical sensors and biosensors to a significant problem in biomedical science, also providing a prospectus for the future.This book compiles the expert knowledge of many specialists in the construction and use of chemical sensors and biosensors including nitric oxide sensors, glucose sensors, DNA sensors, hydrogen sulfide sensors, oxygen sensors, superoxide sensors, immuno sensors, lab on chip, implatable microsensors, et al. Emphasis is laid on practical problems, ranging from chemical application to biomedical monitoring and from in vitro to in vivo, from single cell to animal to human measurement. This provides the unique opportunity of exchanging and combining the expertise of otherwise apparently unrelated disciplines of chemistry, biological engineering, and electronic engineering, medical, physiological. Provides user-oriented guidelines for the proper choice and application of new chemical sensors and biosensors Details new methodological advancements related to and correlated with the measurement of interested species in biomedical samples Contains many case studies to illustrate the range of application and importance of the chemical sensors and biosensors




Electrochemical Biosensors


Book Description

Electrochemical Biosensors summarizes fundamentals and trends in electrochemical biosensing. It introduces readers to the principles of transducing biological information to measurable electrical signals to identify and quantify organic and inorganic substances in samples. The complexity of devices related to biological matrices makes this challenging, but this measurement and analysis are critically valuable in biotechnology and medicine. Electrochemical biosensors combine the sensitivity of electroanalytical methods with the inherent bioselectivity of the biological component. Some of these sensor devices have reached the commercial stage and are routinely used in clinical, environmental, industrial and agricultural applications. Describes several electrochemical methods used as detection techniques with biosensors Discusses different modifiers, including nanomaterials, for preparing suitable pathways for immobilizing biomaterials at the sensor Explains various types of signal monitoring, along with several recognition systems, including antibodies/antigens, DNA-based biosensors, aptamers (protein-based), and more




Electrochemical Sensors in Bioanalysis


Book Description

"Covers the most recent methods and materials for the construction, validation, analysis, and design of electrochemical sensors for bioanalytical, clinical, and pharmaceutical applications--emphasizing the latest classes of enantioselective electrochemical sensors as well as electrochemical sensors for in vivo and in vitro diagnosis, for DNA assay and HIV detection, and as detectors in flow systems. Contains current techniques for the assay or biochemical assay of biological fluids and pharmaceutical compounds."




Wilson & Wilson's Comprehensive Analytical Chemistry


Book Description

Electrochemical Sensor Analysis (ECSA) presents the recent advances in electrochemical (bio)sensors and their practical applications in real clinical, environment, food and industry related samples, as well as in the safety and security arena. In a single source, it covers the entire field of electrochemical (bio)sensor designs and characterizations. The 38 chapters are grouped in seven sections: 1) Potentiometric sensors, 2) Voltammetric sensors, 3) Electrochemical gas sensors 4) Enzyme-based sensors 5) Affinity biosensors 6) Thick and thin film biosensors and 7) Novel trends. Written by experts working in the diverse technological and scientific fields related to electrochemical sensors, each section provides an overview of a specific class of electrochemical sensors and their applications. An accompanying CD-ROM contains 53 related analytical protocols detailing the steps required for practical applications and some design-related issues. Each protocol first describes the objectives of the procedure, followed by a detailed list of all the required materials, reagents, and solutions. The steps to prepare the (bio)sensor including its calibration, measurement sequences followed by sample treatment (if applied) and analysis are described in detail. Each procedure ends with some brief discussions of the typical results expected as well as with selected recommended literature. This interdisciplinary text will be useful for researchers and professionals alike. * Covers applications and problem solving (sensitivity, interferences) in real sample analysis * Details procedures to construct and characterize electrochemical (bio)sensors.




Environmental Analysis by Electrochemical Sensors and Biosensors


Book Description

This book discusses in detail the analysis and monitoring of the most important analytes in the environmental field. It also reviews the implementation, realization and application of sensor designs mentioned in the first volume of this set, dividing the coverage into global parameters, sensors of organics and sensors of inorganics.




Electrochemical Sensors in Immunological Analysis


Book Description

The development of radioimmunoassay (RIA) by R.S. Yalow and S.A. Berson in 1959 opens up a new avenue in ultra sensitive analysis of trace substances in complex biological systems. In recognition of the enormous contributions of RIA to basic research in biology and to routine clinical tests in laboratory medicine, R.S. Yalow, the co-developer of RIA, was awarded, in 1977, the Nobel Prize for Medicine and Physiology. The basic principle of RIA is elegantly simple. It is based on a specific, competitive binding reaction between the analyte and the radio-labeled analog of the analyte for the specific antibody raised to the analyte. The combination of high specificity and affinity of an antibody molecule makes it a very versatile analytical reagent capable of reacting specifically with analytes at a very low concentration in a complex solution such as serum. The sensitivity of RIA is provided by using a radioactive tracer.




Electrochemical Biosensors


Book Description

Since four decades, rapid detection and monitoring in clinical and food diagnostics and in environmental and biodefense have paved the way for the elaboration of electrochemical biosensors. Thanks to their adaptability, ease of use in relatively complex samples, and their portability, electrochemical biosensors now are one of the mainstays of analy




Electrochemical Sensors Technology


Book Description

This book Electrochemical Sensors Technology mostly reviews the modem methods and significant electrochemical and electroanalytical applications of chemical sensors and biosensors. Chapters of this book are invited and contributed from the experts throughout the world from prominent researchers and scientists in the field of sensors and in the field of electro- and biochemistry. Each chapter provides technical and methodological details beyond the level found in typical journal articles or reviews and explores the application of chemical sensors, environmental sensors, and biosensors to a significant problem in biomedical and environmental science, also providing a prospectus for the future. This book compiles with the expert knowledge of many specialists in the construction and use of chemical sensors and biosensors including chemical sensors, biological sensors, DNA sensors, immunosensors, gaseous sensors, ionic sensors, bioassay sensors, lab-on-chips, devices, portable sensors, microchips, nanosensors, implantable microsensors, and so on in the field of fundamental and applied electrochemistry. Highlights and importance are laid on real or practical problems, ranging from chemical application to biomedical monitoring, from in vitro to in vivo, and from single cell to animal to human measurement. This offers a unique opportunity of exchanging and combining the scientist or researcher in electrochemical sensors in largely chemistry, biological engineering, electronic engineering, and biomedical and physiological fields.




Environmental Analysis by Electrochemical Sensors and Biosensors


Book Description

This book presents an exhaustive overview of electrochemical sensors and biosensors for the analysis and monitoring of the most important analytes in the environmental field, in industry, in treatment plants and in environmental research. The chapters give the reader a comprehensive, state-of-the-art picture of the field of electrochemical sensors suitable to environmental analytes, from the theoretical principles of their design to their implementation, realization and application. The first three chapters discuss fundamentals, and the last three chapters cover the main groups of analytes of environmental interest.