Nickel-Titanium Smart Hybrid Materials


Book Description

Nickel-Titanium Smart Hybrid Materials: From Micro- to Nano-structured Alloys for Emerging Applications describes advanced properties that can be adapted in NiTi-alloys. Nickel-Titanium (NiTi) systems are receiving wide demand in growing industries due to their smart, high-temperature or biocompatible behavior. These influenced behaviors are carefully described in the micro-scale and nanoscale range, with NiTi smart materials described on the basis of their shape memory effect (SME) and super-elastic (SE) properties for sensor and actuator application. This book discusses novel properties of nickel-titanium systems, helping materials scientists and engineers produce smart technologies and systems for the aeronautical, automobile, mechanical, healthcare and electronics industries. - Describes the use of nanotechnology and microtechnology in nickel-titanium-based systems - Outlines the major properties of Nickel-Titanium Nanoalloys - Assesses the major challenges of manufacturing nickel-titanium nanoalloys at an industrial scale




Process Variations in Microsystems Manufacturing


Book Description

This book thoroughly examines and explains the basic processing steps used in MEMS fabrication (both integrated circuit and specialized micro machining processing steps. The book places an emphasis on the process variations in the device dimensions resulting from these commonly used processing steps. This will be followed by coverage of commonly used metrology methods, process integration and variations in material properties, device parameter variations, quality assurance and control methods, and design methods for handling process variations. A detailed analysis of future methods for improved microsystems manufacturing is also included. This book is a valuable resource for practitioners, researchers and engineers working in the field as well as students at either the undergraduate or graduate level.




Journal de Physique


Book Description




Shape Memory Alloys for Biomedical Applications


Book Description

Shape memory alloys are suitable for a wide range of biomedical applications, such as dentistry, bone repair and cardiovascular stents. Shape memory alloys for biomedical applications provides a comprehensive review of the use of shape memory alloys in these and other areas of medicine.Part one discusses fundamental issues with chapters on such topics as mechanical properties, fabrication of materials, the shape memory effect, superelasticity, surface modification and biocompatibility. Part two covers applications of shape memory alloys in areas such as stents and orthodontic devices as well as other applications in the medical and dental fields.With its distinguished editors and international team of contributors, Shape memory alloys for biomedical applications is an essential reference for materials scientists and engineers working in the medical devices industry and in academia. - A comprehensive review of shape memory metals and devices for medical applications - Discusses materials, mechanical properties, surface modification and biocompatibility - Chapters review medical and dental devices using shape memory metals, including stents and orthodontic devices




Recent Developments of Electrodeposition Coating


Book Description

This e-book presents a selection of papers focused on some novel aspects of electrodeposited coatings, in particular for medical applications. The biocoatings applied for surface modification of load-bearing implants are still being developed, especially for titanium implants, for which hundreds and thousands of possible technical solutions have been proposed using different techniques and materials. This book is a collection of papers that demonstrate appropriate attempts using various electrodeposition methods. The specific objectives are different, with several looking for improved bioactivity, another for antibacterial properties, and another for increased adhesion on the helix lines on dental implants. The e-book starts with a paper on the methodic development of electrodes for electrowinning. This is followed by paper on the real performance of the surface of dental implants, a subject not often addressed. The next paper focuses on electro-oxidation: a novel two-stage oxidation method, characteristic of the oxide layer on helix line of a model dental implant, and micro-arc oxidation of 3D printed titanium. The last paper focuses on coatings, describing the carbon nanotubes- (hydroxyapatite, chitosan), Eudragit-, and Fe-containing coatings. The e-book concludes with a review of all electrodeposition methods. It is a collection of papers describing novel results in electrodeposition biocoatings, which will be of interest for many scholars and researchers.




Nano-plating (III)


Book Description

Nano-plating (III): Database of Plated Film Microstructures completes the trilogy of nanoplating books written by Tohru Watanabe. Nanoplating (I) covers microstructure formation theory of plated films, with Nanoplating (II) covering a metallurgical approach to electrochemical theory and its applications to technology. This third installment shows the relationship between composition and microstructure of 27 pure metals and 55 alloy plating films, including electrodeposition and electroless plating and provides a database of plated film microstructures. The book presents readers with an efficient reference work that helps optimize their syntheses in order to obtain specific deposit types. - Provides a database of plated film microstructures - Shows the relationship between composition and microstructure of 27 pure metals and 55 alloy plating films, including electrodeposition and electroless plating - Written by a real expert in the field who has over five decades of experience in metal electrodeposition and structural investigation







Meeting Abstracts


Book Description




Transition Metal Oxide Thin Film-Based Chromogenics and Devices


Book Description

The phase transition and the reversible optical and electrical switching that occur in chromogenic materials under the influence of external forces such as heat, light, and electric field are topics of enormous scientific interest. Transition Metal Oxide Thin Film–Based Chromogenics and Devices discusses experimental and theoretical developments in the field of chromogenics based on the transition metal oxide (TMO) thin films. Understanding the relationship between the switching properties of TMO materials and their nanostructure is of paramount importance in developing efficient chromogenic devices. The tailoring of these switching behaviors is afforded detailed coverage in this book, alongside in-depth discussion of a range of chromogenic materials and devices, including photochromics, thermochromics, and electrochromics. Transition Metal Oxide Thin Film–Based Chromogenics and Devices covers both the theoretical aspects of TMO thin film–based chromogenics and their engineering applications in device construction. Academics and professionals in the fields of materials science and optics will find this book to be a key resource, whether their focus is low-dimension materials, light-materials interactions, or device development. - Enables researchers to keep up with developments in thin film–based chromogenics - Provides detailed coverage of the switching mechanism of the various TMO thin films to assist readers in developing more efficient devices - Offers in-depth discussion of a range of chromogenic materials and devices, including thermochromics, photochromics, and electrochromics




Surface Engineering and Technology for Biomedical Implants


Book Description

This new book synthesizes a wide range of interdisciplinary literature to provide the state-of-the art of biomedical implants. It discusses materials and explains the three basic requirements for implant success from a surface engineering perspective: biological compatibility, biomechanical compatibility, morphological compatibility. Biomedical, mechanical, and materials engineers will find this book indispensable for understanding proper treatment of implant surfaces in order to achieve clinical success. Highlights include: • Coverage of surface engineering of polymer, metallic, ceramic and composite implant materials; • Coverage of chemical, mechanical, physical, thermal, and combined surface modification technologies; • Explanations of interfacial reaction between vital tissue and non-vital implant surface; and • Methodologies and technologies for modification of surface layer/zone to promote the osteo-integration, the ultimate success for biomedical implants in both dental and medical practice.