Electromagnetic Fields and Biomembranes


Book Description

The First International School on "Electromagnetic Fields and Biomembranes" took place in Pleven, Bulgaria on 6-12 October 1986. It was designed as an advanced course through a collaboration of the Biological Faculty of Sofia University and the Council of the Bioelectrochemical Society. In an advanced course the lecturers are specialized in particular areas, and the students are usually specialists in related areas. We have captured the expertise of both groups of participants in this volume. The longer papers prepared by the lecturers are joined with the shorter papers based on the posters presented by the "students" to provide a summary of the school as well as an indication of current research directions in the field. The course was designed to provide the latest information about biomembrane structure and function, covering the properties of both the lipid matrix and the recently characterized proteins that function as specialized channels and receptors. Real membranes and various models were covered, with an emphasis on understanding their mechanisms of interaction with various exogenous stimuli (e.g., electric, magnetic, light, etc.). Several practical applications of this information (e.g., electroporation, electro-fusion) were also presented with indications of the possibilities for new developments in biotechnology. The mixture of basic science with practical applications, together with the int~rmingling of lecturers and students from many different countries produced a stimulating atmosphere and effective teaching. We hope that this volume will transmit some of this atmosphere.







Irreversible Electroporation


Book Description

Non-thermal irreversible electroporation is a new minimally invasive surgical p- cedure with unique molecular selectivity attributes – in fact it may be considered the first clinical molecular surgery procedure. Non-thermal irreversible electro- ration is a molecular selective mode of cell ablation that employs brief electrical fields to produce nanoscale defects in the cell membrane, which can lead to cell death, without an effect on any of the other tissue molecules. The electrical fields can be produced through contact by insertion of electrode needles around the undesirable tissue and non-invasively by electromagnetic induction. This new - dition to the medical armamentarium requires the active involvement and is of interest to clinical physicians, medical researchers, mechanical engineers, che- cal engineers, electrical engineers, instrumentation designers, medical companies and many other fields and disciplines that were never exposed in their training to irreversible electroporation or to a similar concept. This edited book is designed to be a comprehensive introduction to the field of irreversible electroporation to those that were not exposed or trained in the field before and can also serve as a reference manual. Irreversible electroporation is broad and interdisciplinary. Therefore, we have made an attempt to cover every one of the various aspects of the field from an introductory basic level to state of the art.




Advanced Electroporation Techniques in Biology and Medicine


Book Description

A reflection of the intense study of the effects of electromagnetic fields on living tissues that has taken place during the last decades, Advanced Electroporation Techniques in Biology and Medicine summarizes most recent experimental findings and theories related to permeabilization of biomembranes by pulsed electric fields. Edited by experts and




Molecular Simulations and Biomembranes


Book Description

The need for information in the understanding of membrane systems has been caused by three things - an increase in computer power; methodological developments and the recent expansion in the number of researchers working on it worldwide. However, there has been no up-to-date book that covers the application of simulation methods to membrane systems directly and this book fills an important void in the market. It provides a much needed update on the current methods and applications as well as highlighting recent advances in the way computer simulation can be applied to the field of membranes and membrane proteins. The objectives are to show how simulation methods can provide an important contribution to the understanding of these systems. The scope of the book is such that it covers simulation of membranes and membrane proteins, but also covers the more recent methodological developments such as coarse-grained molecular dynamics and multiscale approaches in systems biology. Applications embrace a range of biological processes including ion channel and transport proteins. The book is wide ranging with broad coverage and a strong coupling to experimental results wherever possible, including colour illustrations to highlight particular aspects of molecular structure. With an internationally respected list of authors, its publication is timely and it will prove indispensable to a large scientific readership.




Integrative Biophysics


Book Description

Most of the specialists working in this interdisciplinary field of physics, biology, biophysics and medicine are associated with "The International Institute of Biophysics" (IIB), in Neuss, Germany, where basic research and possibilities for applications are coordinated. The growth in this field is indicated by the increase in financial support, interest from the scientific community and frequency of publications. Audience: The scientists of IIB have presented the most essential background and applications of biophotonics in these lecture notes in biophysics, based on the summer school lectures by this group. This book is devoted to questions of elementary biophysics, as well as current developments and applications. It will be of interest to graduate and postgraduate students, life scientists, and the responsible officials of industries and governments looking for non-invasive methods of investigating biological tissues.




Bioelectrochemistry of Biomembranes and Biomimetic Membranes


Book Description

Invaluable to biochemists, biophysicists, and pharmacological scientists; this book provides insights into the essential principles required to understand why and how electrochemical and electrophysiological tools are fundamental in elucidating the mode of ion transport across biomembranes. • Describes the essential electrochemical basics required to understand why and how electrochemical and electrophysiological tools are fundamental in elucidating the mode of ion transport across biomembranes • Requires only basic physical chemistry and mathematics to be understood, without intermediate stumbling blocks that would discourage the reader from proceeding further • Develops contents in a step-by-step approach that encourages students and researchers to read from beginning to end




Bioelectrodynamics and Biocommunication


Book Description

A comprehensive and up-to-date collection of papers on the role of electrodynamical activities in biocommunication is presented in this volume. It provides research findings, practical applications and theoretical investigations linking phenomena as diverse as the sensitivity of organisms to ultraweak ELF electromagnetic fields, noninvasive imaging by magnetic field tomography, coherent liquid crystalline mesophases in living organisms and coherent light emission from biological systems. The volume begins with chapters on the historical perspectives and the biophysical background necessary for understanding bioelectrical phenomena. This is followed by chapters dealing with the biological effects of external electromagnetic fields; the detection of endogenous electrodynamical and related activities and their practical applications; and finally, theoretical perspectives and overviews. It is recommended for undergraduates, graduates and research scientists in all disciplines who wish to be informed of the emerging discipline of bioelectrodynamics.List of Contributors: M Bischof, J J Chang, A S Davydov, D Edmonds, A French, C Gross, Q Gu, J Haffegee, M W Ho, A A Ioannides, R P Liburdy, W P Mei, R Pethig, F A Popp, P T Saunders; C W Smith, T Y Tsong, U Warnke, T M Wu, C L Zhang.




Biological Effects of Magnetic and Electromagnetic Fields


Book Description

The International Symposium on Biological Effects of Magnetic and Electrom- netic Fields was held from September 3-4, 1993 at Kyushu University in Fukuoka . Japan . Originally, it was only intended to be an informal gathering of many scientists who had accepted my invitation to visit Kyushu University after the XXIVth General Assembly of the International Union of Radio Science (URSI), held in Kyoto prior to our symposium . However, since so many distinguished scientists were able to come, it was decided that a more formal symposium would be possible . It was a very productive symposium and, as a result, many of the guests consented that it would be a good idea to gather all the information put forth at the meeting and have it published. In addition, although they were unfortunately unable to attend the symposium . many other distinguished scientists had also expressed their wish to contribute to this effort and, in so doing. help to increase understanding in this, as yet, relatively immature field of science . The question of both positive and negative effects of magnetic and electromagnetic fields on biological systems has become more and more important in our world today as they .