Electromagnetic Imaging for a Novel Generation of Medical Devices


Book Description

This book offers the first comprehensive coverage of microwave medical imaging, with a special focus on the development of novel devices and methods for different applications in both the diagnosis and treatment of various diseases. Upon introducing the fundamentals of electromagnetic imaging, it guides the readers to their use in practice by providing extensive information on the corresponding measurement and testing techniques. In turn, it discusses current challenges in data processing and analysis, presenting effective, novel solutions, developed by different research groups. It also describes state-of-the-art medical devices, which were designed for specific applications, such as brain stroke monitoring, lymph node diagnosis, image-guided hyperthermia, and chemotherapy response monitoring. The chapters, which report on the results of the EU-funded project EMERALD (ElectroMagnetic imaging for a novel genERation of medicAL Devices) are written by leading European engineering groups in electromagnetic medical imaging, whose coordinated action is expected to accelerate the translation of this technology “from research bench to patient bedside”. All in all, this book offers an authoritative guide to microwave imaging, with a special focus on medical imaging, for electrical and biomedical engineers, and applied physicists and mathematicians. It is also intended to inform medical doctors and imaging technicians on the state-of-the-art in non-invasive imaging technologies, at the purpose of inspiring and fostering the translation of research into clinical prototypes, by promoting a stronger collaboration between academic institutions, industrial partners, hospitals, and university medical centers.




Medical Imaging Systems


Book Description

This open access book gives a complete and comprehensive introduction to the fields of medical imaging systems, as designed for a broad range of applications. The authors of the book first explain the foundations of system theory and image processing, before highlighting several modalities in a dedicated chapter. The initial focus is on modalities that are closely related to traditional camera systems such as endoscopy and microscopy. This is followed by more complex image formation processes: magnetic resonance imaging, X-ray projection imaging, computed tomography, X-ray phase-contrast imaging, nuclear imaging, ultrasound, and optical coherence tomography.




Ultrananocrystalline Diamond Coatings for Next-Generation High-Tech and Medical Devices


Book Description

A comprehensive guide to ultrananocrystalline-diamond (UNCDTM) and thin film technology for implantable and external medical devices, edited by a pioneer in the field. Covering synthesis and properties, clinical applications, and regulation, it is essential reading for researchers and practitioners in materials science and biomedical engineering.







Electromagnetic Technologies for Medical Diagnostics


Book Description

Electromagnetic (EM) radio-wave technologies for medical imaging represent an emerging alternative diagnostic modality with some unique features, which is attracting the attention of many researchers worldwide. Diagnostic devices based on EM technology have no side-effects, as they exploit non-ionizing radiation, and their intrinsic low cost makes them sustainable for healthcare systems. This Special Issue provides a comprehensive account of this very active research area by gathering contributions that cover a variety of topics ranging from fundamental research questions to experimental validation and clinical translation.




Radiologic Guide to Orthopedic Devices


Book Description

A comprehensive reference on radiologic appearance, uses and complications of orthopedic devices, for radiologists, orthopedists, physicians, and students.




Study of Second Generation High Temperature Superconductors: Electromagnetic Characteristics and AC Loss Analysis


Book Description

This thesis introduces a systematic study on Second Generation (2G) High Temperature Superconductors (HTS), covering a novel design of an advanced medical imaging device using HTS, and an in-depth investigation on the losses of HTS. The text covers the design and simulation of a superconducting Lorentz Force Electrical Impedance Tomography. This is potentially a significant medical device that is more efficient and compact than an MRI, and is capable of detecting early cancer, as well as other pathologies such stroke and internal haemorrhages. It also presents the information regarding the fundamental physics of superconductivity, concentrating on the AC losses in superconducting coils and tapes. Overall, the thesis signifies an important contribution to the investigation of High Temperature Superconductors. This thesis will be beneficial to the development of advanced superconducting applications in healthcare as well as more broadly in electrical and energy systems.




Simulation and Synthesis in Medical Imaging


Book Description

This book constitutes the refereed proceedings of the First International Workshop on Simulation and Synthesis in Medical Imaging, held in conjunction with MICCAI 2016, in Athens, Greece, in October 2016. The 17 revised full papers presented together in this book were carefully reviewed and selected from 21 submissions. The contributions span the following broad categories: fundamental methods for image-based biophysical modeling and image synthesis; biophysical and data-driven models of disease progression or organ development; biophysical and data-driven models of organ motion and deformation; biophysical and data-driven models of image formation and acquisition; segmentation/registration across or within modalities to aid the learning of model parameters; cross modality (PET/MR, PET/CT, CT/MR, etc.) image synthesis; simulation and synthesis from large-scale image databases; automated techniques for quality assessment of simulations and synthetic images; as well as several applications of image synthesis and simulation in medical imaging such as image registration and segmentation; image denoising and information fusion; image reconstruction from sparse data or sparse views; and real-time simulation of biophysical properties. The papers were divided into two general topics named “simulation based approaches for medical imaging” and “synthesis and its applications in computational medical imaging”.




Principles of Clinical Medicine for Space Flight


Book Description

In its first edition, Principles of Clinical Medicine for Space Flight established itself as the authoritative reference on the contemporary knowledge base of space medicine and standards of care for space flyers. It received excellent notices and is used in the curricula of civilian and military training programs and used as a source of questions for the Aerospace Medicine Certifying Examination under the American Board of Preventive Medicine. In the intervening few years, the continuous manning of the International Space Station has both strengthened existing knowledge and uncovered new and significant phenomena related to the human in space. The Second Edition incorporates this information. Gaps in the first edition will be addressed with the addition new and revised chapters. This edition is extensively peer reviewed and represents the most up to date knowledge.




Handbook of Physics in Medicine and Biology


Book Description

In considering ways that physics has helped advance biology and medicine, what typically comes to mind are the various tools used by researchers and clinicians. We think of the optics put to work in microscopes, endoscopes, and lasers; the advanced diagnostics permitted through magnetic, x-ray, and ultrasound imaging; and even the nanotools, that a